

January 31, 2025

Subject:

2024 Annual Groundwater Monitoring and Corrective Action Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6

Enclosures:

Document	Date
CCR Annual Groundwater Report	January 31, 2025
Requirements: § 257.90(e). Checklist for the JR	
Whiting Pond 1 & 2 CCR Unit	
CCR Annual Groundwater Report	January 31, 2025
Requirements: § 257.90(e). Checklist for the JR	
Whiting Pond 6 CCR Unit	
2024 Annual Groundwater Monitoring and	January 31, 2025
Corrective Action Report, Former JR Whiting	
Power Plant, Pond 1 & 2 and Pond 6. (TRC,	
January 31, 2025)	

The attached document(s) are prepared in conformance with:

Document	Date
§ 257.90(e) of 40 CFR Part 257, Disposal of	April 17, 2015
Coal Combustion Residuals from Electric	
Utilities, under Subpart D of the Resource	
Conservation and Recovery Act (RCRA)	

Consumers Energy

1945 W. Parnall Road Jackson, MI 49201 www.consumersenergy.com Environmental Quality & Sustainability

CCR Annual Groundwater Report Requirements: § 257.90(e) Checklist for the JR Whiting Pond 1 & 2 CCR Unit 2024 Annual Report

Requirement	Reference
 At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available: (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit; 	Figure 2 ⁽¹⁾⁽²⁾
(2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;	Section 2.1 ⁽¹⁾⁽²⁾ , Section 2.0 ⁽³⁾ Note: No monitoring wells were installed or decomissioned during 2024.
(3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;	Section 2.2 ⁽¹⁾⁽²⁾ , Table 3 ⁽¹⁾⁽²⁾
(4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and	Section 1.0 ⁽¹⁾⁽²⁾⁽³⁾ Note: CCR unit remains in Detection Monitoring
(5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.	Section 3.0 ⁽¹⁾⁽²⁾ , Section 3.0 ⁽³⁾
 (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following: (i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95; 	Section 1.0 ⁽¹⁾⁽²⁾⁽³⁾ , Section 3.0 ⁽³⁾
(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;	Section 3.2 ⁽¹⁾⁽²⁾ , Section 3.0 ⁽³⁾ , Section 4.0 ⁽¹⁾⁽²⁾
 (iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e): (A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and 	Not Applicable; remaining in Detection Monitoring
(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Not Applicable; Detection Monitoring
(iv) If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:	Not Applicable; Detection Monitoring
(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	Not Applicable; Detection Monitoring
(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	Not Applicable; Detection Monitoring
(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	Not Applicable; Detection Monitoring
(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	Not Applicable; Detection Monitoring
(v) Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not Applicable; Detection Monitoring
(vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.	Not Applicable; Detection Monitoring

Notes:

(1) First Semiannual 2024 Groundwater Monitoring Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6. TRC. July 29, 2024. (Appendix A of the Annual Report)

(2) Second Semiannual 2024 Groundwater Monitoring Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6. TRC. January 30, 2025. (Appendix B of the Annual Report)

(3) 2024 Annual Groundwater Monitoring and Corrective Action Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6. TRC. January 31, 2025.

CCR Annual Groundwater Report Requirements: § 257.90(e) Checklist for the JR Whiting Pond 6 CCR Unit 2024 Annual Report

Requirement	Reference
 At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available: (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit; 	Figure 2 ⁽¹⁾⁽²⁾
(2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;	Section 2.1 ⁽¹⁾⁽²⁾ , Section 2.0 ⁽³⁾ Note: No monitoring wells were installed or decomissioned during 2024.
(3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;	Section 2.2 ⁽¹⁾⁽²⁾ , Table 4 ⁽¹⁾⁽²⁾
(4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and	Section 1.0 ⁽¹⁾⁽²⁾⁽³⁾ Note: CCR unit remains in Detection Monitoring
(5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.	Section 3.0 ⁽¹⁾⁽²⁾ , Section 3.0 ⁽³⁾
 (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following: (i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95; 	Section 1.0 ⁽¹⁾⁽²⁾⁽³⁾ , Section 3.0 ⁽³⁾
(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;	Section 3.3 ⁽¹⁾⁽²⁾ , Section 3.0 ⁽³⁾ , Section 4.0 ⁽¹⁾⁽²⁾
 (iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to § 257.94(e): (A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and 	Not Applicable; remaining in Detection Monitoring
(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Not Applicable; Detection Monitoring
(iv) If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to § 257.95(g) include all of the following:	Not Applicable; Detection Monitoring
(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	Not Applicable; Detection Monitoring
(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	Not Applicable; Detection Monitoring
(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	Not Applicable; Detection Monitoring
(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	Not Applicable; Detection Monitoring
(v) Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not Applicable; Detection Monitoring
(vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.	Not Applicable; Detection Monitoring

Notes:

(1) First Semiannual 2024 Groundwater Monitoring Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6. TRC. July 29, 2024. (Appendix A of the Annual Report)

(2) Second Semiannual 2024 Groundwater Monitoring Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6. TRC. January 30, 2025. (Appendix B of the Annual Report)

(3) 2024 Annual Groundwater Monitoring and Corrective Action Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6. TRC. January 31, 2025.

2024 Annual Groundwater Monitoring and Corrective Action Report

Former JR Whiting Power Plant Pond 1 & 2 and Pond 6

Erie, Michigan

January 2025

Saul & Holmst

Sarah B. Holmstrom, P.G. Project Manager/Sr. Hydrogeologist

Prepared For: Consumers Energy

Prepared By: TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

6.80

Vincent E. Buening, C.P.G. Sr. Hydrogeologist

TABLE OF CONTENTS

1.0	Prog	gram Summary	1
2.0	Gro	undwater Monitoring	2
	2.1	First Semiannual Monitoring Event	2
	2.2	Second Semiannual Monitoring Event	2
3.0	Cori	rective Action	3

APPENDICES

Appendix A	First Semiannual Monitoring Report
Appendix B	Second Semiannual Monitoring Report

1.0 Program Summary

Coal Combustion Residuals (CCR) are regulated under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule) (USEPA, April 2015, as amended). Standards for groundwater monitoring and corrective action codified in the CCR Rule (40 CFR 257.90-98), apply to the Consumers Energy Company (Consumers Energy) Pond 1 & 2 and Pond 6 at the former JR Whiting (JRW) Power Plant Site. Pursuant to the CCR Rule, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of Consumers Energy, TRC has prepared this Annual Groundwater Monitoring Report for JRW Pond 1 & 2 and Pond 6 to cover the period of January 1, 2024 to December 31, 2024. The reporting schedules for Pond 1 & 2 and Pond 6 have been aligned to be due no later than January 31 of each year.

This 2024 Pond 1 & 2 and Pond 6 Annual Report was prepared in accordance with the requirements of §257.90(e) and presents the monitoring results and the statistical evaluation of the detection monitoring constituents (Appendix III to Part 257 of the CCR Rule) for the April and October 2024 semiannual groundwater monitoring events for Pond 1 & 2 and Pond 6. As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify statistically significant increases (SSIs) in detection monitoring constituents to determine if concentrations in detection monitoring well samples exceed background levels.

No SSIs over background limits attributable to Pond 1 & 2 or Pond 6 were identified for any of the Appendix III constituents during the 2024 monitoring events. Pond 1 & 2 and Pond 6 remained in detection monitoring through the period covered by this report. As such, Consumers Energy will continue with the detection monitoring program at the JRW Pond 1 & 2 and Pond 6 in conformance with §257.90 - §257.94.

2.0 Groundwater Monitoring

The semiannual monitoring events were completed in April and October 2024 to comply with both the CCR Rule and the Michigan Department of Environment, Great Lakes, and Energy (EGLE)-approved monitoring program established for Pond 1 & 2 and Pond 6 in early 2020. Given the congruencies between the two programs, data collected and evaluated under both programs are presented together in two semiannual reports to document the 2024 monitoring activities.

No monitoring wells were installed or decommissioned in 2024. Key actions in the 2024 reporting period included performing detection monitoring for Pond 1 & 2 and Pond 6. No problems were encountered and thus no actions were needed to resolve problems. Key activities projected for 2025 include semi-annual detection monitoring.

2.1 First Semiannual Monitoring Event

A summary of the first semiannual groundwater monitoring event is provided in Appendix A.

2.2 Second Semiannual Monitoring Event

A summary of the second semiannual groundwater monitoring event is provided in Appendix B.

3.0 Corrective Action

There were no corrective actions needed or performed for either Pond 1 & 2 or Pond 6 within the calendar year 2024. No SSIs were recorded for the monitoring period that were attributable to either Pond 1 & 2 or Pond 6; therefore, Consumers Energy will continue with the detection monitoring program at the JRW Pond 1 & 2 and Pond 6 CCR unit in conformance with §257.90 - §257.94.

Appendix A First Semiannual Monitoring Report

July 29, 2024

Brett Coulter, CPG, District Geologist EGLE, Materials Management Division State Office Building 301 East Louis Glick Highway Jackson, MI 49201 via email: CoulterB1@michigan.gov

TRANSMITTAL OF GROUNDWATER MONITORING RESULTS FOR JR WHITING SOLID WASTE DISPOSAL AREA

Dear Mr. Coulter,

Please find attached the First Semiannual 2024 Groundwater Monitoring Report for the JR Whiting Solid Waste Disposal Area, Facility ID 397664, prepared pursuant to the May 2020 Hydrogeological Monitoring Plan.

JR Whiting was following the groundwater monitoring waiver approved on September 2, 2009 until the federal Resource Conservation and Recovery Act (RCRA) coal combustion residuals (CCR) rule required groundwater monitoring at JR Whiting Pond 1&2 and then at Pond 6, beginning around 2016. Since then, in December 2018, the State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Project Act, also known as Part 115 of PA 451 of 1994, as amended, to incorporate requirements of the federal CCR Rule. In 2019, Consumers Energy submitted a revised JR Whiting Hydrogeological Monitoring Plan, former JR Whiting Plant, Erie, Michigan (2020 HMP) (TRC, May 2020 Revision) that was finalized and approved by the Michigan Department of Environment, Great Lakes, and Energy in May 2020. The revised HMP harmonizes both the CCR Rule and state of Michigan requirements. This submittal was prepared in accordance with the July 5, 2013 OWMRP-115-29 communication under the revised HMP.

Please contact me if you have any questions regarding this transmittal.

Sincerely,

Harold D. Ligiste

Harold D. Register, Jr., P.E. Sr. Principal Environmental Engineer Phone: (517) 788-2982 Email: <u>harold.registerjr@cmsenergy.com</u>

cc Gary Schwerin, EGLE (via email)

Consumers Energy 1945 W. Parnall Road Jackson, MI 49201 www.consumersenergy.com

Environmental Quality & Sustainability

First Semiannual 2024 Groundwater Monitoring Report

Former JR Whiting Power Plant Pond 1 & 2 and Pond 6

Erie, Michigan

July 2024

Saul & Holmstra

Sarah B. Holmstrom, P.G. Project Manager

Prepared For: Consumers Energy

Prepared By: TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

E.B.

Vincent E. Buening, C.P.G. Sr. Hydrogeologist

TABLE OF CONTENTS

1.0	Intro	oduction	1
	1.1	Statement of Adherence to Approved Hydrogeological Monitoring Plan	1
	1.2	Program Summary	1
	1.3	Site Overview	2
	1.4	Geology/Hydrogeology	2
2.0	Gro	undwater Monitoring	4
	2.1	Monitoring Well Network	4
	2.2	April 2024 Groundwater Monitoring	4
		2.2.1 Data Quality Review	5
		2.2.2 Groundwater Flow Rate and Direction	
		2.2.2.1 Pond 1 & 2	6
		2.2.2.2 Pond 6	7
3.0	Stat	istical Evaluation	8
	3.1	Establishing Background Limits	8
		3.1.1 Pond 1 & 2	8
		3.1.2 Pond 6	8
	3.2	Data Comparison to Background Limits – Pond 1 & 2 Semiannual Event (April 20)	
	3.3	Data Comparison to Background Limits – Pond 6 Semiannual Event (April 2024).	
4.0	Con	clusions and Recommendations	.10
5.0	Refe	erences	.11

TABLES

Potentiometric Groundwater Elevation Summary – April 2024
Summary of Field Parameter Results – April 2024
Comparison of Groundwater Detection Monitoring Parameter Results to
Background Limits – April 2024 (Pond 1 & 2)
Comparison of Groundwater Detection Monitoring Parameter Results to
Background Limits – April 2024 (Pond 6)
Summary of Statistical Exceedances – April 2024

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan with CCR Monitoring Well Locations
Figure 3	Groundwater Potentiometric Elevation Summary – April 2024

APPENDICES

- Appendix A Appendix B Appendix C Data Quality Reviews Laboratory Reports
- Field Notes

1.0 Introduction

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. Standards for groundwater monitoring and corrective action codified in the CCR Rule (40 CFR 257.90-98) apply to the Consumers Energy Company (Consumers Energy) Ponds 1 and 2 (closed surface impoundment monitored as Pond 1 & 2 using a multiunit groundwater monitoring system) and Pond 6 (closed inactive surface impoundment) at the former JR Whiting (JRW) Power Plant Site (the Site). Prior to the CCR Rule, from about 2009 to 2016, JR Whiting followed the approved groundwater monitoring waiver.

On December 28, 2018, the State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (a.k.a., Michigan Part 115 Solid Waste Management). The December 2018 amendments to Part 115 were developed to provide the State of Michigan oversight of CCR impoundments and landfills and to better align existing state solid waste management rules and statutes with the CCR Rule. On August 8, 2019 Consumers Energy submitted a revised *JR Whiting Hydrogeological Monitoring Plan, former JR Whiting Power Plant, Erie, Michigan* (2020 HMP) (TRC, May 2020 Revision) to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) to comply with the requirements of Part 115, Rule 299.4905, and the CCR Rule. The HMP was approved by the EGLE on May 11, 2020.

1.1 Statement of Adherence to Approved Hydrogeological Monitoring Plan

This JR Whiting First Semiannual 2024 Hydrogeological Monitoring Report (Report) has been prepared by TRC on behalf of Consumers Energy to present groundwater monitoring data collected from the JR Whiting Pond 1 & 2 and Pond 6 during the second calendar quarter of 2024. This report was prepared in accordance with the items listed in Appendix A (Solid Waste Monitoring Submittal Components) of the July 5, 2013 Michigan Department of Environmental Quality – Office of Waste Management and Radiological Protection (MDEQ-OWMRP), now the EGLE Materials Management Division (MMD), communication prescribing the format for solid waste disposal facility monitoring submittals. All references herein to the EGLE are inclusive of the MDEQ. Groundwater sampling, analysis, and information contained in this report was prepared in adherence to the 2020 HMP.

1.2 Program Summary

Historically groundwater monitoring at JRW was performed under the HMP last revised on November 26, 1997 until the groundwater monitoring waiver was approved on September 2, 2009. It was then again performed pursuant to the CCR Rule beginning in 2016 until implementation of the 2020 HMP, at which time monitoring began to be conducted in accordance with both regulatory programs. In the *Second Semiannual 2023 Groundwater Monitoring Report* for the JRW Pond 1 & 2 and Pond 6 (Second Semiannual 2023 Report) (TRC, October 2023), Consumers Energy reported that no potential statistically significant increases (SSIs) were noted during the second 2023 semiannual detection monitoring event.

Therefore, Consumers Energy continued detection monitoring in the first half of 2024 at Pond 1 & 2 and Pond 6 pursuant to §257.94 of the CCR Rule and the HMP.

This First Semiannual 2024 Report presents the monitoring results and the statistical evaluation of the detection monitoring constituents (Section 11511a(3)(c) of Part 115) for the April 2024 semiannual groundwater monitoring event for Pond 1 & 2 and Pond 6. Detection monitoring was performed in accordance with the 2020 HMP. As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify SSIs of detection monitoring monitoring constituents compared to background levels.

1.3 Site Overview

The JR Whiting Plant was a coal-fired power generation facility located in Erie, Michigan, on the western shore of Lake Erie (Figure 1). The plant began producing electricity in 1952 from Units 1 and 2, with Unit 3 beginning operation in 1953. The plant ceased operation in April 2016. Figure 1 is the site location map showing the facility and the surrounding area. Site features are shown on Figure 2.

The JR Whiting Ash Disposal Area is licensed under Michigan Part 115 of the Natural Resources and Environmental Protection Act (NREPA), PA 451 of 1994, as amended.

Pond 1 & 2 is located to the east of the plant, north of the discharge canal, south of Erie Road, and west of Lake Erie and constructed in native clay soil. It was historically used for wet ash sluicing. In 2019, it received its final cover system constructed pursuant to 40 CFR 257.102(a); the Pond 1 & 2 Closure Construction Quality Assurance (CQA) Plan dated August 31, 2017; the Part 115 Administrative Rules; and Pond 1 & 2 Closure Plan submitted to the EGLE on December 18, 2017. The closure of Pond 1 & 2 was certified by the EGLE in a letter dated August 27, 2020.

Pond 6 is located to the north of the plant and was constructed in native clay soil. It was an inactive surface impoundment at the time the CCR Rule became effective on October 19, 2015, and was capped with a final cover certified pursuant to the CCR Rule on December 5, 2017, and certified by the EGLE on August 24, 2018.

1.4 Geology/Hydrogeology

Pond 1 & 2 and Pond 6 are located adjacent to Lake Erie. The subsurface materials encountered at the JR Whiting site are predominately clay-rich till. The surficial CCR fill material is underlain by approximately 40 to 50 feet of laterally extensive clay-rich till that acts as a natural hydraulic barrier across the Site. Limestone bedrock is present beneath the till and is considered the uppermost aquifer at the Site.

Groundwater present within the uppermost aquifer is typically encountered at Pond 1 & 2 and Pond 6 around 70 to 80 feet below ground surface (ft bgs), approximately 510 to 520 feet above mean sea level (AMSL), in the limestone (beneath the till). The uppermost aquifer is confined and protected from CCR constituents by the 40- to 50-foot-thick overlying clay-rich aquitard that interfaces with the limestone at the elevation range of 510 to 520 ft. Potentiometric surface

elevation data from groundwater within the CCR monitoring wells represents the levels in which groundwater rises under hydrostatic pressure within each well and exhibit an extremely low hydraulic gradient across the Site with no consistent or discernible flow direction.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

A groundwater monitoring system has been established for Pond 1 & 2 and Pond 6 for the purpose of detection monitoring. The detection monitoring well network for Pond 1 & 2 and Pond 6 currently consists of six monitoring wells for each CCR unit that are screened in the uppermost aquifer. Monitoring well locations are shown on Figure 2.

As discussed in the HMP, intrawell statistical methods for JR Whiting were selected based on the geology and hydrogeology at the Site (primarily the presence of clay/hydraulic barrier, no apparent flow direction and lack of flow potential across the aquifer), in addition to other supporting lines of evidence that the aquifer is unaffected by the CCR unit (such as the consistency in concentrations of water quality data and similarities in concentrations in wells JRW-MW-16007 through JRW-MW-16009 and the Pond 1 & 2 and Pond 6 monitoring wells).

An intrawell statistical approach requires that each of the downgradient wells double as the background and compliance well, where data from each individual well during a detection monitoring event is compared to a statistical limit developed using the background dataset from that same well. Monitoring wells JRW-MW-15001 through JRW-MW-15006 are located around the perimeter of Pond 1 & 2 and monitoring wells JRW-MW-16001 through JRW-MW-16006 are located around the perimeter of Pond 6. These monitoring wells provide data on both background and downgradient groundwater quality that has not been affected by the CCR unit (a total of six background/downgradient monitoring wells for each pond).

As shown on Figure 2, monitoring wells JRW-MW-16007 through JRW-MW-16009 are used for water level measurements only. These wells were initially installed as potential background monitoring wells during the initial stages of characterizing the Site. However, based on further hydrogeological characterization of the uppermost aquifer, an intrawell statistical approach was selected, which does not rely on JRW-MW-16007 through JRW-MW-16009 for statistical evaluation.

No monitoring wells have been installed or decommissioned since the previous monitoring event.

2.2 April 2024 Groundwater Monitoring

Consumers Energy Laboratory Services personnel performed gauging and sampling of monitoring wells associated with Pond 1 & 2 and Pond 6 on April 9, 2024. Groundwater monitoring was performed in accordance with the HMP. Groundwater samples collected during the April 2024 event were submitted to Consumers Energy Laboratory Services in Jackson, Michigan, for analysis of the following metals and inorganic indicator constituents:

Section 11511a(3)(c) – Detection Monitoring Constituents					
Boron					
Calcium					
Chloride					
Fluoride					
Iron					
pH					
Sulfate					
Total Dissolved Solids (TDS)					

Static water level measurements that represent the potentiometric surface were collected at all locations after equilibration to atmospheric pressure. The depth to water was measured according to ASTM D 4750, "Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well" and recorded to the nearest 0.01 foot. Static water elevation data are summarized in Table 1.

Groundwater samples were collected using a peristaltic pump or submersible pump in accordance with low flow sampling protocol and were not field filtered to allow for total metals analysis. Groundwater field parameters included dissolved oxygen, oxidation reduction potential, pH, specific conductivity, temperature, and turbidity and are summarized on Table 2. All samples were collected in vendor-provided, nitric acid pre-preserved (metals only) and unpreserved sample containers and submitted to the laboratory for analysis. Consumers Energy followed chain of custody procedures to document the sample handling.

Consumers Energy collected quality assurance/quality control (QA/QC) samples from both CCR units, Pond 1 & 2 and Pond 6, during the April 2024 groundwater sampling event. The QA/QC samples per CCR unit consisted of one field blank, one equipment blank, one field duplicate (JRW-MW-15003 at Pond 1 & 2 and JHC-MW-16006 at Pond 6), and one field matrix spike/matrix spike duplicate (MS/MSD) sample collected from JRW-MW-15006 at Pond 1 & 2, and JHC-MW-16003 at Pond 6.

Groundwater analytical results from the semiannual monitoring event are summarized in Table 3 (Pond 1 & 2) and Table 4 (Pond 6). The laboratory analytical reports are included in Appendix B. Field records are included in Appendix C.

2.2.1 Data Quality Review

Data from each round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination. The data were found to be complete and usable for the purposes of the CCR monitoring program. Data quality reviews are summarized in Appendix A.

2.2.2 Groundwater Flow Rate and Direction

Groundwater elevation data collected during the background sampling events showed that the hydraulic gradient for groundwater within the uppermost aquifer is often so low that groundwater flow across Pond 1 & 2 and Pond 6 is frequently incalculable and often stagnant.

There are minor differences in hydraulic head across the monitoring wells (ranging from zero up to 0.15 feet across Pond 1 & 2 and up to 0.24 feet across Pond 6 from event to event from November 2016 through April 2024), indicating that the potentiometric surface is flat the majority of the time. In the few instances since November 2016 where a slight gradient was observed and calculable, the direction of the flow potential was highly variable event to event with flow directions slightly to the northwest, east, and northeast from Pond 1 & 2 and slightly to the south, west, and northeast from Pond 6.

The most pronounced groundwater gradient between November 2016 and April 2024 at Pond 1 & 2 was observed on December 19, 2016, which showed a slight horizontal gradient of approximately 0.00016 ft/ft to the northwest across Pond 1 & 2. For Pond 6, the most pronounced potentiometric head differential of 0.24 feet was observed on February 28, 2018 between JRW-MW-16001 on the north edge of Pond 6 and JRW-MW-16004 on the south edge of the Pond 6 CCR unit. Although, when considering the potentiometric surface elevation data from all of the Pond 6 CCR unit wells, the general groundwater flow direction inferred across the pond at that time is to the southwest, in order to be conservative, the maximum head difference was used to calculate the maximum groundwater flow velocity at the Pond 6 CCR unit throughout the background monitoring period. This results in a very slight horizontal gradient of approximately 0.000099 ft/ft to the south.

2.2.2.1 Pond 1 & 2

Although there was no clear flow direction when looking at water levels across the Pond 1 & 2 well network, the maximum groundwater gradient inferred on April 9, 2024, was calculated using well pair JRW-MW-15005/JRW-MW-15006 and JRW-MW-15002/JRW-MW-15006 to conservatively demonstrate the low groundwater flow rate potential. The head difference across Pond 1 & 2 ranged from 0.00 to 0.09 feet between monitoring wells, with a low calculated horizontal gradient of approximately 0.00014 ft/ft using the maximum head differential. Since both well pairs exhibited the same maximum head differential, the average of the two gradients was used in the calculation. Using the highest hydraulic conductivity measured at the Pond 1 & 2 monitoring wells of 20 feet/day (ARCADIS, 2016), and an assumed effective porosity of 0.1, this results in a maximum inferred groundwater flow rate of approximately 0.028 feet/day (approximately 10 feet/year). However, the actual gradient is much lower when considering the low head difference in the rest of the monitoring wells across Pond 1 & 2 and the lack of discernable flow direction. The Pond 1 & 2 groundwater potentiometric surface elevations measured during the April 2024 sampling event are provided on Table 1 and are summarized in plan view on Figure 3.

The extremely low gradient and lack of general flow direction is similar to that identified in previous monitoring rounds (since the background sampling events commenced in December 2016) and continues to demonstrate that the downgradient compliance wells are appropriately

positioned to detect the presence of detection monitoring constituents that could potentially migrate from Pond 1 & 2.

2.2.2.2 Pond 6

Although there was no clear flow direction when looking at water levels across the Pond 6 well network, the maximum groundwater gradient inferred on April 9, 2024, was calculated using well pair JRW-MW-16006/JRW-MW-16002 and JRW-MW-16003/JRW-MW-16002 to conservatively demonstrate the low groundwater flow rate potential. The head difference across Pond 6 ranged from 0.00 to 0.05 feet between monitoring wells, with a low calculated horizontal gradient of approximately 0.000055 ft/ft using the maximum head differential. Since both well pairs exhibited the same maximum head differential, the average of the two gradients was used in the calculation. Using the highest hydraulic conductivity measured at the Pond 6 CCR unit monitoring wells (11.9 feet/day from the 2016 TRC well installation report) and an assumed effective porosity of 0.1, this results in a maximum inferred groundwater flow rate of approximately 0.0065 feet/day (approximately 2.4 feet/year). Groundwater potentiometric surface elevations measured during the April 2024 sampling event are provided on Table 1 and are summarized in plan view on Figure 3.

The extremely low gradient and/or lack of a consistent or discernable general flow direction is similar to that identified in previous monitoring rounds since the background sampling events commenced in November 2016 and continues to demonstrate that the downgradient compliance wells are appropriately positioned to detect the presence of detection monitoring constituents that could potentially migrate from the JRW Pond 6.

3.0 Statistical Evaluation

Detection monitoring is continuing at JR Whiting Pond 1 & 2 and Pond 6 in accordance with the HMP. The following section summarizes the statistical approach applied to assess the semiannual groundwater data in accordance with the detection monitoring program.

3.1 Establishing Background Limits

3.1.1 Pond 1 & 2

Per the HMP, background limits were established for the detection monitoring constituents using data collected from each of the six established detection monitoring wells (JRW-MW-15001 through JRW-MW-15006). The background limits for each monitoring well have been calculated using thirteen rounds of data collected from November 2016 through March 2019 as presented in detail in the 2019 Annual Report. These background limits will continue to be used throughout the detection monitoring program to determine whether groundwater has been impacted from Pond 1 & 2 by comparing concentrations in the detection monitoring wells to their respective background limits for each detection monitoring constituent, with the exception of iron.

Iron was incorporated into the monitoring program as part of the 2020 HMP. The initial background limits for iron have been calculated using data collected through the October 2023 event as presented in detail in the Second Semiannual 2023 Report. These iron background limits are used to compare to iron groundwater results beginning with the first semiannual 2024 detection monitoring event.

3.1.2 Pond 6

Per the HMP, background limits were established for the detection monitoring constituents using data collected from each of the six established detection monitoring wells (JRW-MW-16001 through JRW-MW-16006). The statistical evaluation of the background data is presented in the Pond 6 July 2019 Annual Report. The detection monitoring background limits for each monitoring well will continue to be used throughout the detection monitoring period to determine whether groundwater has been impacted from Pond 6 by comparing concentrations in the detection monitoring wells to their respective background limits for each detection monitoring constituent, with the exception of iron.

Iron was incorporated into the monitoring program as part of the 2020 HMP. The initial background limits for iron have been calculated using data collected through the October 2023 event as presented in detail in the Second Semiannual 2023 Report. These iron background limits will be used to compare to iron groundwater results beginning with the first semiannual 2024 detection monitoring event.

3.2 Data Comparison to Background Limits – Pond 1 & 2 Semiannual Event (April 2024)

The concentrations of the constituents in each of the detection monitoring wells (JRW-MW-15001 through JRW-MW-15006) were compared to their respective statistical background limits

calculated from the background data collected from each individual well (i.e., monitoring data from JRW-MW-15001 is compared to the background limit developed using the background dataset from JRW-MW-15001, and so forth). The comparisons are presented on Table 3.

There were no exceedances relative to the statistical limits; therefore, there are no SSIs compared to background for any of the constituents. As no SSIs were identified, detection monitoring will be continued in accordance with the HMP. Per the EGLE prescribed submittal format, a statistical exceedances summary is included as Table 5 that reflects the four most recent monitoring events.

3.3 Data Comparison to Background Limits – Pond 6 Semiannual Event (April 2024)

The data comparisons of monitoring wells JRW-MW-16001 through JRW-MW-16006 for the April 2024 groundwater monitoring event are presented on Table 4.

There were no exceedances relative to the statistical limits; therefore, there are no SSIs compared to background for any of the constituents. As no SSIs were found, detection monitoring will be continued at the Pond 6 CCR unit in accordance with the HMP. Per the EGLE prescribed submittal format, a statistical exceedances summary is included as Table 5 that reflects the four most recent monitoring events.

4.0 Conclusions and Recommendations

No SSIs occurred at Pond 1 & 2 or Pond 6 during the April 2024 monitoring event; therefore, Consumers Energy will continue with the detection monitoring program in conformance with the HMP. No corrective actions were needed or performed for either Pond 1 & 2 or Pond 6. The next semiannual monitoring event at the JR Whiting Pond 1 & 2 and Pond 6 CCR units is scheduled for the fourth calendar quarter of 2024.

5.0 References

ARCADIS. May 13, 2016. Summary of Monitoring Well Design, Installation, and Development. JR Whiting Electric Generation Facility – Erie, Michigan. Prepared for Consumers Energy Company.

- TRC Environmental Corporation. December 2016. 2016 Monitoring Well Design, Installation, Development, and Decommissioning. JR Whiting Electric Generation Facility – Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. February 2020. Electric Generation Facilities RCRA CCR Detection Monitoring Program for the Pond 1 & 2 and Pond 6 Areas. Sample and Analysis Plan. JR Whiting Monitoring Program – Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. February 2020. Groundwater Statistical Evaluation Plan Former JR Whiting Power Plant, Pond 1 & 2 and Pond 6, Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. May 2020 Revision. Consumers Energy JR Whiting Hydrogeologic Monitoring Plan (HMP). Prepared for Consumers Energy Company.
- TRC. October 2023. Second Semiannual 2023 Groundwater Monitoring Report Former JR Whiting Power Plant, Pond 1 & 2 and Pond 6 CCR Unit, Erie, Michigan. Prepared for Consumers Energy Company.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.
- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).
- USEPA. 2016. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Extension of Compliance Deadlines for Certain Inactive Surface Impoundments; Response to Partial Vacatur. Office of Conservation and Recovery. EPA 81-FR-51082.
- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Tables

Table 1Potentiometric Groundwater Elevation Summary – April 2024JR Whiting Pond 1 & 2 and Pond 6Erie, Michigan

	Ground TOC			Screen Interval	April 9, 2024		
Well Location	Surface Elevation (ft)	Elevation (ft)	Geologic Unit of Screen Interval	Screen Interval Depth (ft BGS)	· Elevation		Groundwater Elevation
						(ft BTOC)	(ft)
Static Water Level Mor	nitoring Wells	_			-		
JRW-MW-16007	579.47	582.31	Limestone	68.0 to 78.0	511.5 to 501.5	5.43	576.88
JRW-MW-16008	579.95	582.83	Limestone	68.0 to 73.0	512.0 to 507.0	5.95	576.88
JRW-MW-16009	579.90	582.60	Limestone	69.0 to 79.0	510.9 to 500.9	5.71	576.89
Pond 1 & 2							
JRW-MW-15001 ⁽¹⁾	590	581.39	Limestone	78.0 to 88.0	512.7 to 502.7	4.53	576.86
JRW-MW-15002 ⁽¹⁾	590	590.17	Limestone	81.0 to 91.0	511.3 to 501.3	13.27	576.90
JRW-MW-15003 ⁽¹⁾	590	587.23	Limestone	81.0 to 91.0	510.4 to 500.4	10.35	576.88
JRW-MW-15004 ⁽¹⁾	590	589.32	Limestone	86.0 to 96.0	506.5 to 496.5	12.45	576.87
JRW-MW-15005 ⁽¹⁾	590	588.28	Limestone	86.0 to 96.0	508.3 to 498.3	11.38	576.90
JRW-MW-15006 ⁽¹⁾	590	580.48	Limestone	81.0 to 91.0	511.0 to 501.0	3.67	576.81
Pond 6							
JRW-MW-16001	589.19	592.33	Limestone	71.0 to 81.0	518.2 to 508.2	15.45	576.88
JRW-MW-16002	585.78	588.69	Limestone	81.0 to 91.0	504.8 to 494.8	11.85	576.84
JRW-MW-16003	586.19	589.01	Limestone	73.0 to 83.0	513.2 to 503.2	12.12	576.89
JRW-MW-16004	586.48	589.34	Limestone	75.0 to 85.0	511.5 to 501.5	12.47	576.87
JRW-MW-16005	589.29	592.14	Limestone	78.0 to 88.0	511.3 to 501.3	15.26	576.88
JRW-MW-16006	588.26	591.04	Limestone	79.0 to 89.0	509.3 to 499.3	14.15	576.89

Notes:

Top of casing elevation survey was conducted by Rowe Professional Services Company in July 2020.

Elevation in feet relative to North American Vertical Datum 1988 (NAVD 88).

TOC: Top of well casing.

ft BTOC: Feet below top of well casing.

ft BGS: Feet below ground surface.

(1) Screen interval depth below ground surface for Pond 1&2 monitoring wells approximated using an estimated final capped ground surface elevation of 590 feet above mean sea level. Screen interval elevations were measured using the original survey conducted by Sheridan Surveying Co. November 2015 at the time of monitoring well installation.

Table 2Summary of Field ParametersJR Whiting Pond 1 & 2 and Pond 6Erie, Michigan

Sample Location	Sample Date	Dissolved Oxygen	Oxidation Reduction Potential	рН	Specific Conductivity	Temperature	Turbidity
		(mg/L)	(mV)	(SU)	(umhos/cm)	(°C)	(NTU)
JR Whiting Pond 6							
JRW-MW-16001	4/9/2024	0.47	-148.4	8.1	760	14.3	3.7
JRW-MW-16002	4/9/2024	0.40	-158.7	7.7	997	13.6	2.3
JRW-MW-16003	4/9/2024	0.40	-167.5	7.7	986	15.7	1.7
JRW-MW-16004	4/9/2024	0.39	-211.2	7.7	1,171	14.5	2.0
JRW-MW-16005	4/9/2024	0.64	91.5	7.6	843	13.7	5.4
JRW-MW-16006	4/9/2024	0.47	-142.9	7.7	815	13.7	6.9
JR Whiting Pond 1 & 2	2						
JRW-MW-15001	4/9/2024	0.38	-113.8	7.6	1,079	13.5	8.4
JRW-MW-15002	4/9/2024	0.42	-145.3	7.6	1,128	13.8	3.1
JRW-MW-15003	4/9/2024	0.57	-25.2	7.6	1,008	13.8	1.9
JRW-MW-15004	4/9/2024	3.32	60.8	7.5	966	15.0	2.1
JRW-MW-15005	4/9/2024	2.56	58.9	7.7	887	14.6	1.3
JRW-MW-15006	4/9/2024	0.57	103.1	7.6	977	13.4	4.4

Notes:

mg/L -Milligrams per Liter.

mV - Millivolts.

SU - Standard Units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius.

NTU - Nephelometric Turbidity Unit

Table 3 Comparison of Detection Monitoring Parameter Results to Background Limits – April 2024 JR Whiting Pond 1 & 2 Erie, Michigan

Sample Location:		JRW-MW-15001		JRW-MW-15002		JRW-MW-15003		JRW-MW-15004		JRW-MW-15005		JRW-MW-15006	
S	Sample Date:	4/9/2024	PL										
Constituent	Unit	Data	Data		FL								
Appendix III													
Boron	ug/L	191	240	199	220	210	230	221	270	189	270	195	250
Calcium	mg/L	141	180	136	180	123	160	117	140	113	120	126	140
Chloride	mg/L	48.5	55	48.2	56	46.3	55	48.1	56	33.4	46	44.7	53
Fluoride	ug/L	1,330	1,600	1,480	1,900	1,490	1,800	1,350	1,800	1,320	1,700	1,310	1,700
pH, Field	su	7.6	6.8 - 8.2	7.6	7.2 - 7.9	7.6	7.3 - 8.3	7.5	7.0 - 8.0	7.7	7.3 - 8.6	7.6	7.0 - 9.0
Sulfate	mg/L	407	470	414	500	353	440	331	390	301	350	344	410
Total Dissolved Solids	mg/L	870	1,000	840	1,100	752	940	730	880	656	840	772	920
Part 115 Parameters													
Iron	ug/L	1,020	1,800	718	1,200	126	820	103	490	59	660	631	1,900

Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

Table 4 Comparison of Detection Monitoring Parameter Results to Background Limits – April 2024 JR Whiting Pond 6 Erie, Michigan

Sample Location:		JRW-MW-16001		JRW-MW-16002		JRW-MW-16003		JRW-MW-16004		JRW-MW-16005		JRW-MW-16006	
	Sample Date:	4/9/2024	PL										
Constituent	Unit	Data	ta	Data	FL	Data	FL	Data	FL	Data		Data	FL
Appendix III													
Boron	ug/L	158	203	162	209	204	257	192	262	199	244	163	226
Calcium	mg/L	88.7	111	140	149	120	156	149	181	97.7	182	102	117
Chloride	mg/L	19.2	23.6	21.7	25.4	28.2	32.4	38.2	43.7	24.6	29.4	24.8	38.6
Fluoride	ug/L	1,480	2,300	1,120	1,400	1,460	1,600	1,270	1,700	1,510	1,800	1,480	2,200
pH, Field	su	8.1	7.5 - 8.9	7.7	7.5 - 8.3	7.7	7.4 - 7.9	7.7	7.4 - 8.2	7.6	7.0 - 8.0	7.7	7.5 - 8.2
Sulfate	mg/L	254	278	398	426	384	470	464	507	293	498	293	399
Total Dissolved Solids	s mg/L	532	770	752	832	732	1,040	918	1,110	612	1,030	596	904
Part 115 Parameters													
Iron	ug/L	130	230	339	510	401	630	391	750	54	940	287	400

Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter. SU - standard units; pH is a field parameter. All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

Table 5Summary of Statistical Exceedances – April 2024JR Whiting Pond 1 & 2 and Pond 6Erie, Michigan

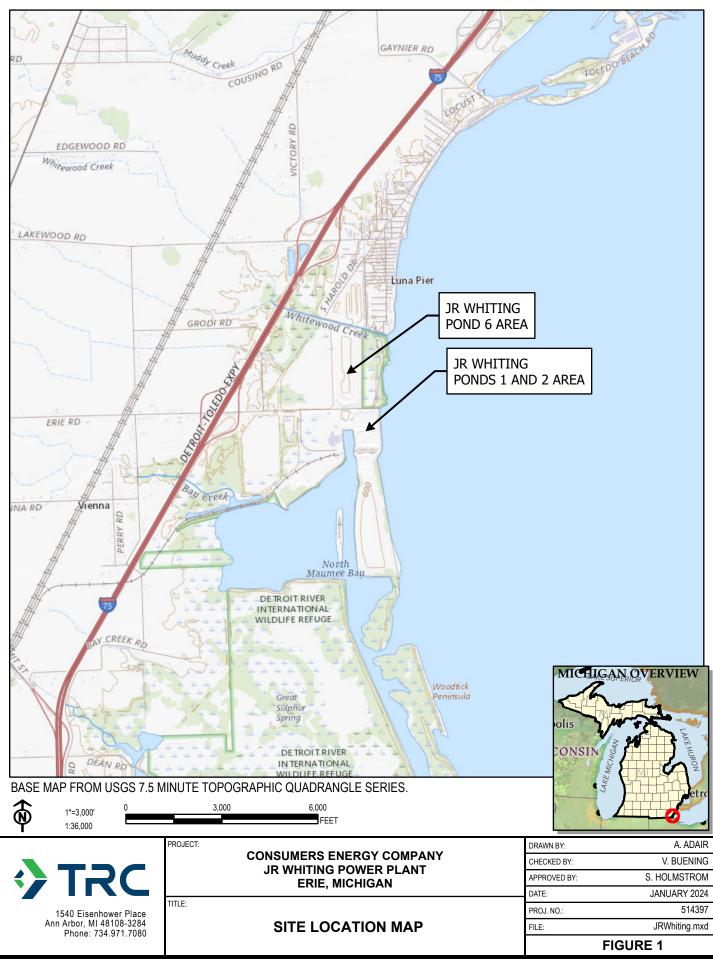
MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY SUMMARY OF STATISTICAL EXCEEDANCES

Data is in (X) ug/L or () mg/L unless otherwise stated

Facility: JR Whiting – WDS# 397664

Well #	Location	Parameter	Part 201 GRCC	Statistical Limit (or 'CC' for Control Charts)	2 Qtr. 2024 (bold >201)	4 Qtr. 2023 (bold >201)	2 Qtr. 2023 (bold >201)	4 Qtr. 2022 (bold >201)
JRW-MW-15002	JR Whiting Pond 1 & 2	Boron	500	220	199	202	193	225 ⁽¹⁾
JRW-MW-15003	JR Whiting Pond 1 & 2	Boron	500	230	210	226	208	241 ⁽¹⁾
JRW-MW-15005	JR Whiting Pond 1 & 2	Calcium	NC	120	113	114	121 ⁽²⁾	117

NOTES:

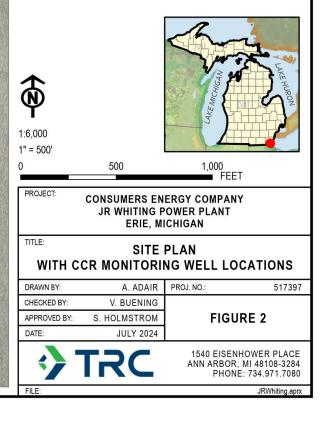

NC = No Criteria

(1) Exceedance was determined to be from natural variability as detailed in the Alternate Source Demonstration: April 2022 Detection Monitoring Event, Former JR Whiting Power Plant Ponds 1 and 2, Erie, Michigan dated July 28, 2022.

(2) Exceedance was determined to be from natural variability as detailed in the Alternate Source Demonstration: April 2023 Detection Monitoring Event, Former JR Whiting Power Plant Ponds 1 and 2, Erie, Michigan dated July 14, 2023.

Figures

⁻⁻ Saved By: AADAIR on 1/2/2024, 09:53:02 AM


÷

MONITORING WELL (STATIC WATER LEVEL ONLY)

♦ CCR UNIT MONITORING WELL

NOTES:

- BASE MAP IMAGERY FROM GOOGLE EARTH PRO AND PARTNERS, (4/17/2024).
 STATIC WATER ONLY WELL LOCATIONS SURVEYED BY SHERIDAN SURVEYING CO. ON 11/19/2015.
 PONDS 1 AND 2 WELL LOCATIONS SURVEYED BY ROWE PROFESSIONAL SERVICES CO. ON 11/27/2019.

BEL FORMAT	
MONITORING	<u>3 WELL ID</u> FT (MEASUREMENT DATE)
ROUNDWATER ELEVATION	FI (MEASUREMENT DATE)
IES: ASE MAP IMAGERY FROM GOOGLE	EARTH PRO AND PARTNERS
I/17/2024). VELL LOCATIONS SURVEYED BY SHE 1/19/2015. ONDS 1 AND 2 WELL LOCATIONS SU ERVICES CO. ON 11/27/2019.	ERIDAN SURVEYING CO. ON IRVEYED BY ROWE PROFESSIONAL SURVEYED BY ROWE PROFESSIONAL
000 = 500' 500	1,000 FEET
ROJECT: CONSUMERS EN JR WHITING P ERIE, MI	OWER PLANT
TLE: GROUND POTENTIOMETRIC EL APRIL	EVATION SUMMARY
RAWN BY: A. ADAIR	PROJ. NO.: 553810
HECKED BY: R. PAALANEN PPROVED BY: S. HOLMSTROM ATE: JULY 2024	FIGURE 3
TRC	1540 EISENHOWER PLACE ANN ARBOR, MI 48108-3284 PHONE: 734.971.7080
LE:	JRWhiting.aprx

Appendix A Data Quality Reviews

Pond 1 & 2

Laboratory Data Quality Review Groundwater Sampling Event April 2024 Consumers Energy JR Whiting Pond 1 & 2

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the April 2024 groundwater monitoring sampling event. Samples were analyzed for anions, total metals, and total dissolved solids by CE Laboratory Services, located in Jackson, Michigan. The laboratory analytical results were reported in laboratory project number 24-0255.

During the April 2024 sampling event, a groundwater sample was collected from each of the following wells:

- JRW-MW-15001
 JRW-MW-15002
 JRW-MW-15003
- JRW-MW-15004 JRW-MW-15005 JRW-MW-15006

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals (Boron, Calcium, Iron)	SW-846 6020B

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for equipment blanks and field blanks. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;

- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.
- It should be noted that results for method blanks and laboratory control samples were not provided for review by the laboratory. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III constituents as well as iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.
- When the data are evaluated through a detection monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- One equipment blank (EB-01) and one field blank (FB-01) were collected. Target analytes were not detected in these blank samples.
- MS and MSD analyses were performed on sample JRW-MW-15006 for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences (RPDs) were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since all MS/MSD recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- A laboratory duplicate analysis was not performed on a sample from this data set.
- Samples DUP-01/JRW-MW-15003 were submitted as the field duplicate pair with this data set; all criteria were met.
- The nondetect RL for TDS (10 mg/L) in samples EB-01 and FB-01 was above the RL specified in the Sample and Analysis Plan (SAP) (1.0 mg/L). No adverse impact on data usability since TDS was detected >10x the blank RLs in the associated groundwater samples.

The nondetect RL for sulfate (1,000 µg/L) in samples EB-01 and FB-01 was below the RL specified in the SAP (2,000 µg/L). No adverse impact on data usability since reported RL is lower than SAP RL.

Pond 6

Laboratory Data Quality Review Groundwater Sampling Event April 2024 Consumers Energy JR Whiting Pond 6

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the April 2024 groundwater monitoring sampling event. Samples were analyzed for anions, total metals, and total dissolved solids by CE Laboratory Services, located in Jackson, Michigan. The laboratory analytical results were reported in laboratory project number 24-0256.

During the April 2024 sampling event, a groundwater sample was collected from each of the following wells:

- JRW-MW-16001
 JRW-MW-16002
 JRW-MW-16003
- JRW-MW-16004 JRW-MW-16005 JRW-MW-16006

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals (Boron, Calcium, Iron)	SW-846 6020B

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for equipment blanks and field blanks. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and

- Overall usability of the data.
- It should be noted that results for method blanks and laboratory control samples were not provided for review by the laboratory. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III constituents as well as iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.
- When the data are evaluated through a detection monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- One equipment blank (EB-02) and one field blank (FB-02) were collected. Target analytes were not detected in these blank samples.
- MS/MSD analyses were performed on sample JRW-MW-16003 for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since MS/MSD recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- A laboratory duplicate analysis was not performed on a sample from this data set.
- Samples DUP-02/JRW-MW-16006 were submitted as the field duplicate pair with this data set; all criteria were met.
- The nondetect RL for TDS (10 mg/L) in samples EB-02 and FB-02 was above the RL specified in the Sample and Analysis Plan (SAP) (1 mg/L). No adverse impact on data usability since TDS was detected >10x the blank RLs in the associated groundwater samples.
- The nondetect RL for sulfate (1,000 µg/L) in samples EB-02 and FB-02 was below the RL specified in the SAP (2,000 µg/L). No adverse impact on data usability since reported RL is lower than SAP RL.

Appendix B Laboratory Reports

Pond 1 & 2

To: HDRegister, P22-521

From: EBlaj, T-258

Date: April 21, 2024

Subject: RCRA GROUNDWATER MONITORING – JR WHITING POND 1 & 2 – 2024 Q2

CC: Sarah Holmstrom, Project Manager TRC Environmental Corporation 1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 24-0255

phone 517-788-1251 *fax* 517-788-2533

135 W. Trail St.

Jackson, MI 49201

CE Laboratory Services conducted groundwater monitoring at JR Whiting, Pond 1 & 2 on 04/09/2024, for the 1st Semiannual monitoring requirement, and as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 04/09/2024.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

<u>Qualifier</u>	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
Μ	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:JR Whiting ComplexWork Order ID:JRW RCRA GW Monitoring - Pond 1&2 - April 2024Date Received:4/09/2024Chemistry Project:24-0255

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	Site
24-0255-01	JRW-MW-15001	Groundwater	04/09/2024 14:05	JRW RCRA GW Monitoring - Pond 1&2
24-0255-02	JRW-MW-15002	Groundwater	04/09/2024 16:07	JRW RCRA GW Monitoring - Pond 1&2
24-0255-03	JRW-MW-15003	Groundwater	04/09/2024 14:31	JRW RCRA GW Monitoring - Pond 1&2
24-0255-04	JRW-MW-15004	Groundwater	04/09/2024 12:51	JRW RCRA GW Monitoring - Pond 1&2
24-0255-05	JRW-MW-15005	Groundwater	04/09/2024 16:06	JRW RCRA GW Monitoring - Pond 1&2
24-0255-06	JRW-MW-15006	Groundwater	04/09/2024 15:17	JRW RCRA GW Monitoring - Pond 1&2
24-0255-07	DUP-01	Groundwater	04/09/2024 00:00	JRW RCRA GW Monitoring - Pond 1&2
24-0255-08	EB-01	Water	04/09/2024 16:25	JRW RCRA GW Monitoring - Pond 1&2
24-0255-09	FB-01	Water	04/09/2024 16:18	JRW RCRA GW Monitoring - Pond 1&2
24-0255-10	JRW-MW-15006 Field MS	Groundwater	04/09/2024 15:17	JRW RCRA GW Monitoring - Pond 1&2
24-0255-11	JRW-MW-15006 Fleld MSD	Groundwater	04/09/2024 15:17	JRW RCRA GW Monitoring - Pond 1&2

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15001	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-01	Collect Time:	02:05 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-01-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	191		ug/L	20	04/17/2024	AB24-0417-08
Calcium	141000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	1020		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0255-01-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	48500		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1330		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	407000		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0255-01-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	870		mg/L	10	04/11/2024	AB24-0411-03

24-0255 Page 5 of 18

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15002	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-02	Collect Time:	04:07 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total		e Total M	etals	Aliquot:	24-0255-02-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	199		ug/L	20	04/17/2024	AB24-0417-08
Calcium	136000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	718		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous			eous	Aliquot:	24-0255-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	48200		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1480		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	414000		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540)C			Aliquot:	24-0255-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	840		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15003	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-03	Collect Time:	02:31 PM
Matrix:	Groundwater		
Lab Sample ID:	24-0255-03	••••••	

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-03-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	210		ug/L	20	04/17/2024	AB24-0417-08
Calcium	123000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	126		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analy	Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				24-0255-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	46300		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1490		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	353000		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0255-03-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	752		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15004	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-04	Collect Time:	12:51 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-04-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	221		ug/L	20	04/17/2024	AB24-0417-08
Calcium	117000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	103		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Ana	Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				24-0255-04-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	48100		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1350		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	331000		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C	;			Aliquot:	24-0255-04-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	730		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15005	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-05	Collect Time:	04:06 PM
Matrix:	Groundwater		
maanna	orounanator		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-05-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	189		ug/L	20	04/17/2024	AB24-0417-08
Calcium	113000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	59		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analy	te List, CI, F,	SO4, Aqu	eous	Aliquot:	24-0255-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	33400		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1320		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	301000		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0255-05-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	656		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15006	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-06	Collect Time:	03:17 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-06-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	195		ug/L	20	04/17/2024	AB24-0417-08
Calcium	126000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	631		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Anal	yte List, Cl, F,	SO4, Aqu	eous	Aliquot:	24-0255-06-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	44700		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1310		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	344000		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0255-06-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	772		mg/L	10	04/11/2024	AB24-0411-03

24-0255 Page 10 of 18

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	DUP-01	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-07	Collect Time:	12:00 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-07-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	210		ug/L	20	04/17/2024	AB24-0417-08
Calcium	121000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	131		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Ana	alyte List, Cl, F,	SO4, Aqu	eous	Aliquot:	24-0255-07-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	45500		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1450		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	349000		ug/L	1000	04/11/2024	AB24-0410-02
Total Dissolved Solids by SM 25400	C			Aliquot:	24-0255-07-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	762		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	EB-01	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-08	Collect Time:	04:25 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-08-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	ND		ug/L	20	04/17/2024	AB24-0417-08
Calcium	ND		ug/L	1000	04/17/2024	AB24-0417-08
Iron	ND		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0255-08-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	ND		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2	540C			Aliquot:	24-0255-08-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	ND		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	FB-01	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-09	Collect Time:	04:18 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0255-09-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	ND		ug/L	20	04/17/2024	AB24-0417-08
Calcium	ND		ug/L	1000	04/17/2024	AB24-0417-08
Iron	ND		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0255-09-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	ND		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540	С			Aliquot:	24-0255-09-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	ND		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15006 Field MS	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-10	Collect Time:	03:17 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCF	Rule Appendix III and F	Aliquot:	Analyst: EB			
Parameter(s)	rameter(s) Result		Units	RL	Analysis Date	Tracking #
Boron	98		%	20	04/17/2024	AB24-0417-08
Calcium	105		%	1000	04/17/2024	AB24-0417-08
Iron	115		%	20	04/17/2024	AB24-0417-08

Anions by EPA 300.0 CCF	R Rule Analyte List, Cl, F,	Aliquot:	Analyst: KDR			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	117		%	1000	04/10/2024	AB24-0410-02
Fluoride	98		%	1000	04/10/2024	AB24-0410-02
Sulfate	110		%	1000	04/11/2024	AB24-0410-02

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0255
Field Sample ID:	JRW-MW-15006 Fleid MSD	Collect Date:	04/09/2024
Lab Sample ID:	24-0255-11	Collect Time:	03:17 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CC	R Rule Appendix III and F	Aliquot:	Analyst: EB			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	103		%	20	04/17/2024	AB24-0417-08
Calcium	113		%	1000	04/17/2024	AB24-0417-08
Iron	122		%	20	04/17/2024	AB24-0417-08

Anions by EPA 300.0 CCR	Rule Analyte List, Cl, F,	Aliquot:	Analyst: KDR			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	116		%	1000	04/10/2024	AB24-0410-02
Fluoride	98		%	1000	04/10/2024	AB24-0410-02
Sulfate	108		%	1000	04/11/2024	AB24-0410-02

Data Qualifiers

Exception Summary

No exceptions occurred.

Chemistry Department

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

	Project Log-In Number: 24-0255								
	Inspection Date: 04-10-24 Inspection By: EB								
	Sample Origin/Project Name: Pond 122								
	Shipment Delivered By: Enter the type of shipment carrier.								
	Pony FedEx UPS USPS Airborne								
	Other/Land Carry (whom) KOR								
	Tracking Number: Shipping Form Attached: Yes No								
	Shipping Containers: Enter the type and number of shipping containers received.								
	Cooler Cardboard Box Custom Case Envelope/Mailer								
	Loose/Unpackaged Containers Other								
	Condition of Shipment: Enter the as-received condition of the shipment container.								
	Damaged Shipment Observed: None Dented Leaking								
	Other								
	Shipment Security: Enter if any of the shipping containers were opened before receipt.								
	Shipping Containers Received: Opened NIA Sealed NIA								
	Enclosed Documents: Enter the type of documents enclosed with the shipment.								
	CoC V Work Request Air Data Sheet Other								
	Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range $9.8 - 5.9$ $\stackrel{\circ}{\sim}$ Samples Received on Ice: Yes \checkmark No								
	M&TE # and Expiration $0.5402 / 05-23-24$								
	Number and Type of Containers: Enter the total number of sample containers received.								
pH Paper	Container Type Water Soil Other Broken Leaking								
13-640-508	VOA (40mL or 60mL)								
lota 205522	Quart/Liter (g/p)								
	9-oz (amber glass jar)								
Ext 02/15/25	2-oz (amber glass)								
	125 mL (plastic) 22								
	24 mL vial (glass)								
	EB 500 mL (plastic) _								
	oriozy Other								

Page 2 of 2 not needed

24-0255 Page 17 of 18

CHAIN OF CUSTODY

Consumers Energy	
Count on Us®	

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

Page _ l _ of _ l

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

SAMP	LING SITE / CU	JSTOM	ER:			PROJECT NUMBER:	SAP CC or WC)#:							٨	NAI	Vei	IS DE		OTE	D				
JRW	Pond 1&2 GW	/ Monit	toring –	April 2024		24-0255 REQUESTER: Michelle Marion					ANALYSIS REQUESTED (Attach List if More Space is Needed)					(QA REÇ)UIREN	MENT:						
SAMP	LING TEAM:	VD	D			TURNAROUND TIME REQUIRED:																- c	□ NPDE	S	
		KV	K, C	LE		🗆 24 HR 🗆 48 HR 🗆 3 DAYS 🖾 STA	NDARD OTH	IER _														Ē	🛛 TNI		
SENE	REPORT TO:	Mich	nelle Ma	rion		email:	phone:															C	ISO 17	7025	
0	COPY TO:	TRC				MATRIX CODES: GW = Groundwater OX = Other_			CO	DNT.	AINI	ERS										C	□ 10 CFI	R 50 AP	P. B
						$WW = Wastewater \qquad SL = Sludge$ $W = Water / Aqueous Liquid \qquad A = Air$			F	RES	ERV	ATI	VE	Metals								ſ	□ INTEF	RNAL IN	٩FO
	LAB	SAMP	LECOL	LECTION	RIX	S = Soil / General Solid $WP = WipeO = Oil$ $WT = General$	al Waste	TOTAL #			* *		Ξ.	ll Me	suc							C	□ OTHE	.R	
SA	MPLE ID	D	ATE	TIME	MATRIX	FIELD SAMPLE ID / LOC	ATION	TOT	None	ONH	NaOF	HCI	MeOH	Total]	Anions	TDS							RE	MARK	IS
2	4-0255-01	4.9	.24	14:05	GW	JRW-MW-15001		3	2	1				x	x	x									
	-02			16:07	GW	JRW-MW-15002		3	2	1				x	x	x									
	-03			14:31	GW	JRW-MW-15003		3	2	1				x	x	x									
	-04			15:21	GW	JRW-MW-15004		3	2	1				x	x	x									
	-05			16:06	GW	JRW-MW-15005		3	2	1				x	x	x									
	-06			15:17	GW	JRW-MW-15006		3	2	1				x	x	x									
	-07			-	GW	DUP-01		3	2	1				x	x	x									
	-08			16:25	W	EB-01		3	2	1				x	x	x									
	-09			16:18	W	FB-01		3	2	1				x	x	x									
	-10			15:17	GW	JRW-MW-15006 MS		2	1	1				x	x										
	-11		V	רו:5	GW	JRW-MW-15006 MSD		2	1	1				x	x										
	QUISHED BY:	Pail	+		оателі 9.2	IME: REG 1/18:56								COI	MME	NTS	:	_							
	QUISHED BY:				DATE/1	,	CEIVED BY:																515		
						<u>\</u>								Tem	perat	ure:	6.8	-5.	9 ℃		Cal. D	ue Da	nte: 5	23.	24
						24	-0255 Page 18 of	18																	

Pond 6

To: HDRegister, P22-521

From: EBlaj, T-258

Date: April 21, 2024

Subject: RCRA GROUNDWATER MONITORING – JR WHITING POND 6 – 2024 Q1

CC: Sarah Holmstrom, Project Manager TRC Environmental Corporation 1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 24-0256

phone 517-788-1251 *fax* 517-788-2533

135 W. Trail St.

Jackson, MI 49201

CE Laboratory Services conducted groundwater monitoring at JR Whiting, Pond 6 on 04/09/2024, for the 1st Semiannual monitoring requirement, and as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis in the Chemistry department of Laboratory Services on 04/09/2024.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

Qualifier	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
Κ	Reporting limit raised due to matrix interference
М	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:JR Whiting ComplexWork Order ID:JRW RCRA GW Monitoring - Pond 6 - April 2024Date Received:4/09/2024Chemistry Project:24-0256

<u>Sample #</u>	Field Sample ID	Matrix	Sample Date	Site
24-0256-01	JRW-MW-16001	Groundwater	04/09/2024 11:51	JRW RCRA GW Monitoring - Pond 6
24-0256-02	JRW-MW-16002	Groundwater	04/09/2024 11:16	JRW RCRA GW Monitoring - Pond 6
24-0256-03	JRW-MW-16003	Groundwater	04/09/2024 12:21	JRW RCRA GW Monitoring - Pond 6
24-0256-04	JRW-MW-16004	Groundwater	04/09/2024 13:21	JRW RCRA GW Monitoring - Pond 6
24-0256-05	JRW-MW-16005	Groundwater	04/09/2024 12:08	JRW RCRA GW Monitoring - Pond 6
24-0256-06	JRW-MW-16006	Groundwater	04/09/2024 11:00	JRW RCRA GW Monitoring - Pond 6
24-0256-07	DUP-02	Groundwater	04/09/2024 00:00	JRW RCRA GW Monitoring - Pond 6
24-0256-08	EB-02	Water	04/09/2024 13:30	JRW RCRA GW Monitoring - Pond 6
24-0256-09	FB-02	Water	04/09/2024 13:35	JRW RCRA GW Monitoring - Pond 6
24-0256-10	JRW-MW-16003 Field MS	Groundwater	04/09/2024 12:21	JRW RCRA GW Monitoring - Pond 6
24-0256-11	JRW-MW-16003 Fleld MSD	Groundwater	04/09/2024 12:21	JRW RCRA GW Monitoring - Pond 6

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	JRW-MW-16001	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-01	Collect Time:	11:51 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0256-01-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	158		ug/L	20	04/17/2024	AB24-0417-08
Calcium	88700		ug/L	1000	04/17/2024	AB24-0417-08
Iron	130		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous					Aliquot: 24-0256-01-C02-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	19200		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1480		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	254000		ug/L	1000	04/11/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0256-01-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	532		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	JRW-MW-16002	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-02	Collect Time:	11:16 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals					Aliquot: 24-0256-02-C01-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	162		ug/L	20	04/17/2024	AB24-0417-08
Calcium	140000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	339		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyt	te List, CI, F, S	O4, Aqu	eous	Aliquot: 2	24-0256-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	21700		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1120		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	398000		ug/L	1000	04/11/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0256-02-C03-A01	Analyst: LMO
*	D	=1	11.24	•		i
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	752		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	JRW-MW-16003	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-03	Collect Time:	12:21 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals					Aliquot: 24-0256-03-C01-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	204		ug/L	20	04/17/2024	AB24-0417-08
Calcium	120000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	401		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyt	e List, Cl, F, S	O4, Aqu	eous	Aliquot: 2	24-0256-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	28200		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1460		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	384000		ug/L	1000	04/11/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot: 2	24-0256-03-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	732		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	JRW-MW-16004	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-04	Collect Time:	01:21 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0256-04-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	192		ug/L	20	04/17/2024	AB24-0417-08
Calcium	149000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	391		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous					Aliquot: 24-0256-04-C02-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	38200		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1270		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	464000		ug/L	1000	04/11/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0256-04-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	918		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	JRW-MW-16005	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-05	Collect Time:	12:08 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals					Aliquot: 24-0256-05-C01-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	199		ug/L	20	04/17/2024	AB24-0417-08
Calcium	97700		ug/L	1000	04/17/2024	AB24-0417-08
Iron	54		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analy	te List, Cl, F,	SO4, Aqu	eous	Aliquot:	24-0256-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	24600		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1510		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	293000		ug/L	1000	04/11/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0256-05-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	612		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	JRW-MW-16006	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-06	Collect Time:	11:00 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 2	24-0256-06-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	163		ug/L	20	04/17/2024	AB24-0417-08
Calcium	102000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	287		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot: 24-0256-06-C02-A01 Analyst: KDR						
					24-0256-06-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	24800		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1480		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	293000		ug/L	1000	04/11/2024	AB24-0410-02
Total Disselved Solido by SM 2540C						
Total Dissolved Solids by SM 2540C				Aliquot: 2	24-0256-06-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	596		mg/L	10	04/11/2024	AB24-0411-03

Sample Site: JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID: DUP-02	Collect Date:	04/09/2024
Lab Sample ID: 24-0256-07	Collect Time:	12:00 AM
Matrix: Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0256-07-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	161		ug/L	20	04/17/2024	AB24-0417-08
Calcium	100000		ug/L	1000	04/17/2024	AB24-0417-08
Iron	300		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule	Analyte List, CI, F,	SO4, Aqu	eous	Aliquot:	24-0256-07-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	25000		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	1470		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	291000		ug/L	1000	04/11/2024	AB24-0410-02
Total Dissolved Solids by SM 2	540C			Aliquot:	24-0256-07-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	598		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	EB-02	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-08	Collect Time:	01:30 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0256-08-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	ND		ug/L	20	04/17/2024	AB24-0417-08
Calcium	ND		ug/L	1000	04/17/2024	AB24-0417-08
Iron	ND		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0256-08-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	ND		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C			Aliquot:	24-0256-08-C03-A01	Analyst: LMO	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	ND		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	FB-02	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-09	Collect Time:	01:35 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0256-09-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	ND		ug/L	20	04/17/2024	AB24-0417-08
Calcium	ND		ug/L	1000	04/17/2024	AB24-0417-08
Iron	ND		ug/L	20	04/17/2024	AB24-0417-08
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0256-09-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Fluoride	ND		ug/L	1000	04/10/2024	AB24-0410-02
Sulfate	ND		ug/L	1000	04/10/2024	AB24-0410-02
Total Dissolved Solids by SM 2540C			Aliquot:	24-0256-09-C03-A01	Analyst: LMO	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	ND		mg/L	10	04/11/2024	AB24-0411-03

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
Field Sample ID:	JRW-MW-16003 Field MS	Collect Date:	04/09/2024
Lab Sample ID:	24-0256-10	Collect Time:	12:21 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals			Aliquot: 24-0256-10-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	99		%	20	04/17/2024	AB24-0417-08
Calcium	123		%	1000	04/17/2024	AB24-0417-08
Iron	112		%	20	04/17/2024	AB24-0417-08

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous			Aliquot:	24-0256-10-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #
Chloride	106	%	1000	04/10/2024	AB24-0410-02
Fluoride	96	%	1000	04/10/2024	AB24-0410-02
Sulfate	110	%	1000	04/11/2024	AB24-0410-02

JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0256
JRW-MW-16003 Fleid MSD	Collect Date:	04/09/2024
24-0256-11	Collect Time:	12:21 PM
Groundwater		
	JRW-MW-16003 Fleid MSD 24-0256-11	JRW-MW-16003 Field MSDCollect Date:24-0256-11Collect Time:

Metals by EPA 6020B: CCR Rul	e Appendix III and F	e Total M	etals	Aliquot:	24-0256-11-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	101		%	20	04/17/2024	AB24-0417-08
Calcium	113		%	1000	04/17/2024	AB24-0417-08
Iron	119		%	20	04/17/2024	AB24-0417-08

Anions by EPA 300.0 CCR	Rule Analyte List, Cl, F,	SO4, Aqueous	Aliquot:	24-0256-11-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #
Chloride	108	%	1000	04/10/2024	AB24-0410-02
Fluoride	99	%	1000	04/10/2024	AB24-0410-02
Sulfate	111	%	1000	04/11/2024	AB24-0410-02

Data Qualifiers

Exception Summary

No exceptions occurred.

Chemistry Department

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

	Project Log-In Number:	24-0256		
	Inspection Date: 04-10-	24	Inspection By: EB	
	Sample Origin/Project Name			
	Shipment Delivered By: Ente	er the type of shipment	carrier.	
	Pony I	FedEx U	JPS USPS	Airborne
	Other/Hand Carry(wh	om) CLE		
	Tracking Number:		Shipping Form Attac	ched: Yes No
	Shipping Containers: Enter t	he type and number of	shipping containers received.	
	Cooler 🔽	Cardboard Box	Custom Case	Envelope/Mailer
	Loose/Unpackaged Co	ontainers	Other	
	Condition of Shipment: Ente	r the as-received condi	tion of the shipment container.	
	Damaged Shipment O	bserved: None	Dented	Leaking
				•
	Shipment Security: Enter if a	ny of the shipping con	ainers were opened before recei	pt.
			K Sealed N/A	F
	Enclosed Documents: Enter t			
	CoC Wo	rk Request	Air Data Sheet	Other
	Temperature of Containers:	Measure the temperatu	re of several sample containers.	
	As-Received Tempera	ture Range 1.8-4.9	Samples Received on I	ce: Yes No
	M&TE # and Expirati	on 015402 / 03	5-23-24	
			mber of sample containers recei	ved
off Paper	Container Type	<u>Water Soil</u>	Other	Broken Leaking
pH Paper	VOA (40mL or 60mL)		Other	<u>Droken</u> <u>Leaking</u>
13.640-508	Quart/Liter (g/p)			
Lat \$ 205522	9-oz (amber glass jar)			
Gxp 02/15/25	2-oz (amber glass)			
	125 mL (plastic)	22		
	24 mL vial (glass) عده			
	500 mL (plastic) 58 eq 10 L q	9		
	Other			

Page 2 of 2 Not reeded

24-0256 Page 17 of 18

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

l (

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

CAMD	INC SITE / CI	ISTOMED.			DROJECT NUMPED.			-																
	LING SITE / CU				PROJECT NUMBER:	SAP CC or WC	D#:											QUE				QA REQU	IIREM	ENT.
JRW	Pond 6 GW M	onitoring – Apr	il 2024		24-0256	REQUESTER:	Mich	nelle	Mar	ion				(Attac	h Li	st if M	fore S	Space	is Ne	eded)			IIIII	LINI.
SAMP	LING TEAM:				TURNAROUND TIME REQUIRED:																	□ NPDES		
-	CIE .	+ KDR			□ 24 HR □ 48 HR □ 3 DAYS ⊠ STA	NDARD DOTH	IER_			_		_									0	🛛 TNI		
SENE	REPORT TO:	Michelle Mar	ion		email:	phone:																□ ISO 170	25	
C	COPY TO:	TRC			MATRIX CODES: GW = Groundwater OX = Other_			со	NTA	INE	RS											□ 10 CFR	50 APP	. B
					WW = Wastewater SL = Sludge W = Water / Aqueous Liquid A = Air			P	RESI	ERV	ATIV	Έ	tals] INTERN	AL INI	FO
	LAB	SAMPLE COLL	ECTION	RIX	S = Soil / General Solid $WP = WipeO = Oil$ $WT = General$	al Waste	TOTAL #			-	-	-	I Metals	sue								□ OTHER		
SA	MPLE ID	DATE	TIME	MATRIX	FIELD SAMPLE ID / LOC	ATION	TOT	None	ONH H'SO	NaOH	HCI	Other	Total	Anions	TDS							REN	ARKS	
2	4-0256-01	4.9.24	1151	GW	JRW-MW-16001		3	2	1				x	x	x									
	-02	4.9.24	1110	GW	JRW-MW-16002		3	2	1				x	x	x									
	-03	4.9.24	1221	GW	JRW-MW-16003		3	2	1				x	x	x									
	-04	4.9.24	1321	GW	JRW-MW-16004		3	2	1				x	x	x									
	-05	4.9.24	1209	GW	JRW-MW-16005		3	2	1				x	x	x									
	-06	4.9.24	1100	GW	JRW-MW-16006		3	2	1				x	x	x									
	-07	4.9.24	-	GW	DUP-02		3	2	1				x	x	x									
	-08	4.9.24	1330	W	EB-02		3	2	1		T		x	x	x									
	-09	4.9.24	1335	W	FB-02		3	2	1		1		x	x	x									
	-10	4.9.24	1221	GW	JRW-MW-16003 MS		2	1	1				x	x				-						
	-11	4 .9.24	1221	GW	JRW-MW-16003 MSD		2	1	1				x	x										
RELING	QUISHED BY:		Ι	DATE/T	IME: REC	CEIVED BY:	-	L	_				CON	MME	NTS:									
<u>^</u>	ARIIM	hippt	6	4.9.	24 1830	Y																		
CASUDANIET 4.9 RELINQUISHED BY: DATE/				DATE/T	TIME: REC	CEIVED BY:						_	Received on Ice?YesNoM&TE #: $OlS402$ Temperature: $OlS402$ Cal. Due Date: $S \cdot 23 \cdot 24$											
						v							Tem	perat	ure:[.8-1	4.9	_°C		Cal. Di	ue Da	ite: <u>5.2</u>	3-24	
						0256 Page 18 of	18—																	

Appendix C Field Notes

Aboratory Services	WATER LEVEL DATA										
Site:	JR Whiting										
Project No:	24-02	55,-0250	6	Reviewed by:							
Analyst:	KDR			Review Date: 04-17-29							
Date:	4.9.24										
Method:	Electronic Tape										
Tape ID:											
Well ID	Time	DTW Trial 1 (ft)	DTW Trial 2 (ft)	DTB (ft)	Remarks						
JRW MW-15001	13:18	4.53	4.53	81.95	Good						
JRW MW-15002	12:58	13.27	13.27	92.25	Good						
JRW MW-15003	13:02	10.35	10.35	90.27	Locked						
JRW MW-15004	13:05	12.45	12.45	96.43	GOOD						
JRW MW-15005	13:10	11.38	11.38	93.62	Good						
JRW MW-15006	13:15	3.67	3.627	82.97							
JRW MW-16001	09:32	15.45	15.45	83.98	marked TOC						
JRW MW-16002	09:35	11.85	11.85	94.36	marked TOC						
JRW MW-16003	09:38	12.12	12.12	86.01	marked TOC						
JRW MW-16004	09:41	12.47	12.47	88.85	marked TOC						
JRW MW-16005	69:23	15.26	15.26	91.40	marked TOC						
JRW MW-16006	09:19	14.15	14.15	91.68	marked TOC						
JRW MW-16007	08:22	5.43	5.43	80.95	marked TOC						
JRW MW-16008	08:28	5.95	5.95	76.27	marked TOC						
JRW MW-16009	08:33	5.71	5.71	81.91	marked TOC						

NOTES: TOC reference point DTW = Depth to Water DTB = Depth to Bottom

Pond 1 & 2

Laboratory Ser				onsumers Ene oring Well Sa					
Well ID Location	W MW- SRW	500(Date <u>4.9</u> .		PVC	Control Num	ber <u>24-(</u> Iron	Galv. Steel	
Purge Method	i: 🗸	Peristaltic	Sut	omersible	Bla	dder	Fultz	Bail	er
Depth to Wate	er Tape: 5	olinst 10	1 P7 S/N	: LS030	624				
QC SAMPLE:		s/MSD	DUP_	_	Sonde ID:	15M	19H	20M 21G	i22J
Depth-to-wate	er T/PVC (ft)	4.52	Depth-To-B	ottom T/PVC	(ft) 81.9	5	Completed b	KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
13:29	Starte	2 pum	2	n parameters f	or the last thre	ee readings	300	4.65	
13:32	7.53	14.1	1094	17.5	1.75	+91.7	300	4.65	7.24
13:36	7.53	13.5	1089	6.1	0.63	+98.2	300	4.65	9.55
13:40		13.4	1087	5.0	0.52	+57.8	300	4.65	9.08
13:44	7.56	13.3	1087	4.4	0.46	- 47.9	300	4.65	9.44
13:48		13.4	1089	4.2	0.43	- 88.5	300	4.65	9,20
		13.5	1089	3.9	0.41			4.65	9.00
13:52						-105.1	300 300	4.65	8.59
13:56	7.61	13.6	1086	3.8	0.39	-108.5	300	4.65	
14:04	-	13.6	1083	3.7	0.39	-111.3	300	4.65	8.67
	T.61 Collect	13.5	1079	3.7	0.38	-113.8	300	1.025	8.44
11.05	conect	ca sar	ollection	-				-	
14:10	thd s	sample a	ollection						
Total Pump Ti	ime (min): 3	6	Total Purge V	olume (gal) :	≈ 3.0		Review Date:	24-17-24	1
Weather:	5501	-, Sunni	y, windy	1			Review By:	Y.	
Comments:		-		-					
Bottles	s Filled	Preservat	ive Codes:	A - NONE B -	HNO3 C - H2	SO4 D - NaOH	E-HCIF-		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
	125 mL	HDPE	BA	4					
ì	250mL	1	A	T		1			
* Pumn rate shou	ıld be <500 ml /m	in for low-flow a	nd <1 gal/min for	hiah Volume					

Laboratory Ser				Consumers End toring Well Sa					
Well ID 3R	JRW		Date <u>4.9</u>	کے H Well Material:	PVC		ber <u>24-0</u> Iron	255-02 Galv. Steel	
Purge Method	i:	Peristaltic	Su	bmersible	Bla	ldder	Fultz	Bail	er
Depth to Wate	er Tape: Sc	slinst 10	>1 P7 s/1	N: LS030	624				
QC SAMPLE:		MS/MSD	DUP_		Sonde ID:	15M	19H	20M 21G	i22J
Depth-to-wate	er T/PVC (ft)	13.28	Depth-To-B	ottom T/PVC	(ft) <u>92.2</u>	5	Completed by	KOR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
15:42	ster	ted pur	1	on parameters f	or the last thre	ee reaaings	304	13.31	
15:46	7.69	14.3	1131	14.6	1.46	-120.9	304	13.31	2.39
15:50	7.61	13.8	1126	4.8	0.50		304	13.31	2.51
15:54	7.61	13.9	1127	4.3	0.44	-138.7	304	13.31	2.76
15:58	7.61	13.7		4.0	6.42	-45.9	304	13.31	2.99
16:02		13.7	1130	3.8	6.39	-149.3	304	13.31	3.10
16:06		13.8	1128	4.1	0.42	-145.3	304	13.31	3.13
16:07					U. I ac	110.5	304	(3.3)	21.5
16:13		sample a					1		
	FIG	Jaryre							
Total Pump Ti Weather:		25°F, surv		/olume (gal) : }	≈ <u>2</u> .0		Review Date: Review By:		સ્ત
Comments:	_				_	-		0	
Bottles	s Filled	Preservat	tive Codes: Preservative	A - NONE B -	HNO3 C - H25	SO4 D - NaOH	E - HCI F -	Preservative	
Quantity	size 125 mL 125 nL	Type HDPE	Code B	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
i	250ml	T	A	Ţ					
* Pump rate shou	uld be <500 mL/	min for low-flow a	nd <1 gal/min fo	r high Volume.					

Laboratory Se				Consumers Ene toring Well Sa			-		
Well ID <u>Ji</u> Location	ZW - MW- JR Whit		Date <u>५.५</u> . V	<u> こ</u> 니 Vell Material:	PVC	Control Numb	er <u>24-625</u> Iron	5-03,-07 Galv. Steel	
Purge Method	d: 🔽	Peristaltic		bmersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: C	reotech	S/N	: 7371					
QC SAMPLE:	N	ns/msd	UUP-	01	Sonde ID:	15M	19H	_20M21G	22J
Depth-to-wat	er T/PVC (ft)	10.31	Depth-To-B	ottom T/PVC (ft) <u>90.2</u>	1	Completed by	ILE_	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% on parameters f	+/- 0.3ppm or the last thre	+/- 10mV e readings	*	< 0.33	+/- 10%
1341	Starte	ed pum					100	10.37	
1355	7.58	14.2	1008	32.7	3,43	-20.2	180	10.37	4,39
1400	7.55	14.2	1005	17.0	1.73	-15,9	180	10.37	3.74
1405	7.55	14.0	1007	11.3	1.16	-11.8	180	10.37	2.24
1410	7.56	14.1	1007	8,7	0.89	-20.6	180	10.37	2.55
1415	7.57	13.9	1008	6.6	0.68	- 23,3	180	10,37	2.28
1420	7.57	13.9	1008	5.5	0.54	-25.8	180	10.37	2.11
1425	7.58	14.0	1007	5,4	0.55	-25.8	150	10,37	2.06
1430	7.55	13.8	1008	5,5	0.57	- 25.2	180	10,37	1.89
1431	(D11 €	cter 5	amples						
1436	end					1			
							_		
			1				-		
T-1-1 D T		E.L		()					
Total Pump T Weather:		54		/olume (gal) :	22.5		Review Date: Review By:		A
weather.	10 +	, Sunn	y, win	P4			1	1	
Comments:				PH = 7.3-	8.3	(ollected	Fields	Jrb
Rottle	s Filled	Drocorus	tive Codes:		1NO2 C 1125	04 D-NaOH I			
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Type	Preservative Code	Filtered Y/N
2	12SmL	HDPE	B	N	quantity	Size	1160		
2	125ML	1	A						
2	250mL	+	Ð	1					
* Pump rate sho	uld be <500 mL/n	inin for low-flow a	nd <1 gal/min for	high Volume.		1			

Laboratory Ser				onsumers Ene oring Well Sa			~		-
	JR whi		Date <u> </u>	・2 イ /ell Material:	PVC	Control Numb	per <u>24 - 62</u> Iron	. <u>55 - <i>0</i> 4</u>] Galv. Steel	
Purge Method	i: [V]	Peristaltic	Sut	omersible	Bla	dder	Fultz	Baile	er
Depth to Wat	er Tape: 6	reotech	S/N:	7371					-
QC SAMPLE:		IS/MSD	DUP_)	Sonde ID:	<u> </u>	19H	_20M21G	22J
Depth-to-wat	er T/PVC (ft)	12.50	Depth-To-Bo	ottom T/PVC (ft) <u>96.4</u>	3	Completed b	y_CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizatio	on parameters f		ee readings			
1450	Sta	rted P	ump				180	12.52	
1455	7.53	15.5	949	37,6	3,75	+36,2	180	12.52	2.66
1500	1.53	15.0	947	367	3.69	+43.8	180	12.52	2,70
1505	7.52	15.4	970	35,8	3.58	+52.2	180	12,52	2.40
1510	7.52	15,3	967	35.0	3.54	+ 55.8	180	12.52	2.05
1515	7.52	15.4	946	34.9	3.48	+57.3	180	12.52	2.14
1570	7.51	15.0	ciele	32.9	3.32	+60.8	180	12.52	2.12
		1		56 M	5.5 2		1.60	12.52	LAL
1521		ed San	npre						
1523	ent								
1									
Total Pump 1	Time (min):	31	Total Purge V	olume (gal) :	~1.5		Review Date	: 04-17-2	Ч
Weather:	7	DOF, S	unny, v	windy_			Review By	: ¥	
Commonter			1511		7 12			0	
Comments:		-	PI-1	= 7,2 -	810				
Bottle	s Filled	Preserva	tive Codes:	A-NONE B-	HNO3 C-H25	SO4 D - NaOH	E-HCIF-		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
I. I	125ML	HDPE	В	N					
1	125mL		A		1				
1	250mL	+	A	1					
* Pump rate sha	 ould be <500 mL/r	 nin for low-flow a	nd <1 gal/min for	high Volume.		1			

of the second se

Commers Energy
Count on Us
Laboratory Services

Consumers Energy Company Monitoring Well Sampling Worksheet

Well ID <u>JRM</u> Location			Date <u>4 9-2</u> W	ell Material:	PVC	Control Numb	0er <u>24-62</u> Iron	55-05 Galv. Steel	
Purge Method	:	Peristaltic	Sub	mersible	Bla	dder	Fultz	Baile	er
Depth to Wate	er Tape: 🛛 🤇	alo tecr	s/N:	7371					
QC SAMPLE:		IS/MSD	DUP	_ 1 1	Sonde ID:	<u> </u>	19H	20M21G	22J
Depth-to-wate	er T/PVC (ft)	11.40	Depth-To-Bo	ttom T/PVC (ft) <u>93.62</u>	<u>E</u> .	Completed by	LLE	1
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% n parameters fo	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1535	Ster			in pur unicers je	in the fast the		220	11.43	
1555	7.70	ting P	· · · · · · · · · · · · · · · · · · ·	36.2	3.00	+58.8	220	11.43	1.67
1545	7.70	14.8	892 890	28.6	2.90	+60.8		11.43	1.62
1550	7.70	14.4	860	25.6	2.60	159.6	220	11.43	1.70
1555	7.70	14.4	886	25.5	2.60	+59.7	220	11.43	1.52
1600	7.70	14.5	887	25.4	2.59	+59.7	220	11.43	1.48
1605	770	14.6	887	25.2	2.56	+58.9	220	11.43	1.28
1606	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sample	POIL	2:00	. 20. 1	120		1.20
1600	tr	-	NIP/PY						
1400	(/		1						
-									
					1				
-								1	
Total Pump T	ime (min):	31	Total Purge V	olume (gal) :	120		Review Date	: 04-17-2	4
Weather:			nny u				Review By		
		1, 50	<u> 11-7 0</u>					X	
Comments:	_		PH=7	3-8.6				U	
Bottle	s Filled	Preservat	tive Codes:	A-NONE B-I	HN03 C - H25	04 D - NaOH	E-HCLE-		
Bottle	- Theu	Treserva	Preservative					Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	125mL	HDPE	BA			1			
)	250ML	T	A	+					
* 0			nd <1 gal/min for i	tab Malana					

Laboratory Se				onsumers Ene oring Well Sa	Contract of the second second				
Well ID <u>JR</u> Location	W MW- SRW	5006	Date <u>4.9</u> . W	入 Y ell Material:	PVC	Control Numl	ber <mark>24-02</mark> Iron	55-06,-1 Galv. Steel	01-11
Purge Metho	d: 🗸	Peristaltic	Sub	mersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: Sol	inst 101	P7 S/N	LS030 (224		_		
QC SAMPLE:		s/MSD	DUP	_	Sonde ID:	15M	19H	20M210	i22J
Depth-to-wat	er T/PVC (ft)	3.67	Depth-To-Bo	ottom T/PVC	(ft) 82.97	1	Completed by	KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level Drawdown	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
14:29	Stacte	2 pump		n parameters f	or the last thre	e readings	312	3.71	
14:32	7.80	13.8	983	52.9	576	+52.3	312	3.71	3.89
14:36	7.60	13.3	981	31.1		+74.6	312	3.71	3.91
14:40	7.55	13.6	983	23.7		+90.5	312	3.71	3.86
14:44	7.56	13.8	983	20.1	2.07	+98.9	312	3.71	3.80
14:48	7.57	13.6	984	15.2	1.58	+101.7	312	3.71	3.87
14:52	7.58	13.8	982	12.0	1.23	H03.8	312	3.71	3.92
	7.59	13.6	9.82	9.5	0.98	+105.8	312	3.71	4.03
15:00		13.9	981	8,2	0.84	+108.4	312	3.71	4.17
15:04	7.60	13.8	981	6.8	0.70	H07. 5	312	3.71	4.19
	7.60	Contraction of the second	979		and the second se	+108.0			
15.00	7.60	17.0	079			+107.4			
15:12	7/1	13.0	477	5.6	A 57	+103.1	312	271	4.40
15.17	Collect	-) som	ole	0102	0.51	110311	0100	5.11	
	End so								
	ime (min):			olume (gal) :	240		Review Date:	04-17-2-	4
Weather:	19 The Cold 10 1		, windy		1.0		Review By:		
		1	4 00 11 100 /					0	
Comments:				3 D					
Bottle	s Filled	Preservati	CONTRACTOR OF A	A-NONE B-	HNO3 C-H2	SO4 D - NaOH	E - HCI F -		-
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
3	125mL	HPPE	B	Y			-		
I	125mL 250mL	L	A A	L					
* Pump rate sho	uld be <500 mL/m	in for low-flow ar	nd <1 gal/min for i	high Volume.		-			

Laboratory Se				Consumers Ene toring Well Sa						
Well ID	B-01 SRW		Date 4.9.*				ber <u>24-0</u> Iron	255-08 Galv. Steel		
Purge Metho	d:	Peristaltic	Su	bmersible	Blad	der	Fultz	Bail	er	
Depth to Wa	ter Tape:		S/N	:						
QC SAMPLE:		IS/MSD	DUP_		Sonde ID:15M19H20M21G22J					
Depth-to-wa	ter T/PVC (ft)		Depth-To-B	ottom T/PVC ((ft) Completed byKDR					
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
	C 11 1		1	on parameters fo	or the last three	readings				
16:25	Collect	ed san	nple							
		1								
							1			
									1	
	1									
1										
Total Pump	Time (min):	-	Total Purge V	olume (gal) :	-		Review Date:	04-17	-24	
Weather:	550F.	Sunny 1	vindy				Review By:	10		
								0		
Comments:		1						-	1.1.2	
Bottle	es Filled	Preserva	tive Codes:	A-NONE B-H	INO3 C - H2SO	4 D - NaOH	E-HCIF			
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N	
l	125mL	HDPE	B	N	quantity	JILE	туре	couc		
1	125mL		À							
l	250mL	T	A	+				1		
* D		1.5.1.0	and <1 gal/min for	hteh Melvere						

Laboratory Se				Consumers Ene toring Well Sa							
Well ID	FB-OI JRW		Date 4.9.				ber 24-02	Galv. Steel			
Purge Metho	d:	Peristaltic	Su	bmersible	Bladder Fultz Bailer						
Depth to Wat	er Tape:		S/N	:							
QC SAMPLE:	M	S/MSD	DUP_	_	Sonde ID:15M19H20M21G22						
Depth-to-wat	er T/PVC (ft)		Depth-To-Bottom T/PVC (ft)	÷	Completed by	KDR			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
11				on parameters fo	or the last three	readings	1	1			
16.18	Collect	ed san	np le								
Total Pump T	ime (min):	-	Total Purge V	olume (gal) :	-		Review Date:		4		
Weather:		61. 11. A.M.		orume (gar) .					,		
weather.		, sonny,	windy				Review By:	-7-			
Comments:								0			
	-	-			-				-		
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-H	INO3 C - H2SC	4 D - NaOH	E - HCl F	Dessemination			
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N		
1	125mL	HDPE	B	N							
1	125mL	T	A			-	-		_		
	250mL	ł	A	Y	1						
* Pumn rate sho	uld be <500 mL/m	in for low-flow a	nd <1 gal/min for	hiah Volume							
		eet REV7 04082						Page	l of (

ers Emergy

-

Pond 6

	MW		Moni	toring Well Sa	mpling Work		-	1. TA	
Vell ID JR	W-1600		Date <u>4.9</u>	.24	_	Control Numb	per 24 - 02	56-61	
ocation	JR Whit	ing_	١	Vell Material:	PVC	SS	Iron	Galv. Steel	
ourge Metho	d: 🔽	Peristaltic		bmersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: G	cotech	s/N	: 7371					
QC SAMPLE:	N	IS/MSD	DUP_	_	Sonde ID:	<u> </u>	19H	_20M21G	22J
Depth-to-wat	er T/PVC (ft)	15.45	Depth-To-B	ottom T/PVC	(ft)_\$3.93	_	Completed b	y cie	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizatio	on parameters f	for the last thre	e readings			-
1020	star	ed to	purge						
1023	intia	read	lings						
	11.49	100 C	1028	52.1	5.42	+10.2		15.88	19.11
	FLOW	rate	(2 pu)	mps in	1 lara	a tubi	nal		_
			6 = 39	D mi lu	hin 7			-	his
			e : 52			912 mL	min	For Pur	ge pallo
1120	8.10	13,9	718	17.1	1.74	-99.9		15.89	10,95
1125	lover	ed pu	mp spe	eal to	1	nin For	stabili	zution	
1130	8.14	14.1	767	4.8	0.49	-155.4	500	15. 701	8.19
1135	8.15	14.6	764	4.7	0.49	-155.1	500	15.79	5.08
1140	B.14	14.2	761	4.6	0.47	-151.1	506	15.79	4.70
1145	8.12	14.2	761	4.6	0.47	-149.1	500	15.79	3.80
1150	6,12	14,3	760	4.6	0.47	-148.4	500	15.79	3.73
1151	collect		nanla						
1152	enP		incp.						
Fotal Pump 1		92.	Total Purge V	olume (gal) :	15+7-15	1175	Review Date:	04.27.	24
Weather:			1	olume (gal) .	.9. 1.13	21 11 13	Review By	- 1	• 1
- such str		Windy,	Sonny				neview by		
Comments:		PH	= 7.5-8,0					V	
Contraction of the local division of the loc									
Bottle	es Filled	Preserva	tive Codes: Preservative	A-NONE B-	HNO3 C - H2S	O4 D - NaOH I	E - HCI F	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	125mL	HDPE	В	1					
1	V	1	A						
1	250ML	1	A						

Laboratory Se				Consumers End toring Well Sa					
	W·MO-14 JRWhiti d:	107		Z_식 Well Material: bmersible	Control Number $24 - 6256 - 62$ PVC SS Iron Galv. Steel Bladder Fultz Bailer				
Depth to Wat	er Tape: 6	eotech	S/N	: 7371					
QC SAMPLE:		ns/msd	DUP_		Sonde ID:	<u> </u>	19H	20M21G	22J
Depth-to-wat	er T/PVC (ft)	11.87	Depth-To-B	ottom T/PVC	(ft)_94.34	2	Completed by	CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/-0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1.2.2.2.4			Stablizati	on parameters f	for the last thre	ee readings		C	
1035	Starte	ed pun	np				255	12.03	
1040	7.86	13.9	999	6.2	0.64	-160.9	255	12.03	12:52
1045	7.75	13.7	999	4.7	0.49	-156.5	255	12.03	10.25
1050	7.73	13.5	994	ц.3	0.44	-157.4	255	12.03	9.13
1055	7.72	13.5	998	4.1	0.43	-157.6	255	12.03	8.70
1.100	7.72	13.6	992	4.0	0.41	-158.2	255	12.03	7.95
1105	7.72	13.5	1001	3.9	0.41	-158.2	255	12.03	3.61
1110	7.71	13.5	999	3.9	6,40	-158.4	255	12.03	2.41
Tils	7.71	13.6	947	3.9	0.40	-158.7	255	12.03	2.33
and the second			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			50.	23	12.05	2.05
1116	collec	ted S	ample			-			
111	enP		-						
1.0.0					1.	10			
1					1				
Total Pump T	Time (min):	46	Total Purge	Volume (gal) :	~3.0		Review Date	04-17-2	.4
Weather:	UGEF,	wind	Sunny				Review By	Y.	
)		0				0	
Comments:	_	PH =	7.5-8	.3		-		_	
Bottle	es Filled	Preserva	ative Codes:	A-NONE B-	HNO3 C-H2	SO4 D - NaOH	E-HCI F		
Quantity	Size	Tuno	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
	125mV	Type	B	N	Quantity	JIZE	Type	cout	
1	125mL	I	A	i					
1	250ML	1	A	1					
* Pump rate sho	 ould be <500 mL/n	nin for low-flow	and <1 gal/min for	high Volume.		1			

Laboratory Ser	vices			onsumers Ene toring Well Sa		C	.,			
Well ID Location			Date <u> </u>	24 Vell Material:	PVC	Control Numb	oer <u>24 - 6256- 1</u> Iron	MS ALD <u>53, -(g- (</u>) Galv. Steel		
Purge Method	i: 🔽	Peristaltic	Sub	omersible	Bla	dder	Fultz	Baile	er	
Depth to Wat	er Tape: G	rotech	S/N	: 7371						
QC SAMPLE:		ns/msd	DUP_	_	Sonde ID:15M19H20M21G22J					
Depth-to-wat	er T/PVC (ft)	12.15	Depth-To-Bo	ottom T/PVC (ft) <u>86.01</u>	-	Completed by	LIE_		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/- 3%	+/-10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
				on parameters f	or the last thre	e redaings	1.0.	10.10		
1156	and the second se	ted pu				1.22.2.4	180	12.15		
1200	7.65	15.0	982.	4.7	0.47	-155.5	186	12.19	2.19	
1205	7.64	15.4	987	4.3	0.43	-161.6	186	12.19	2.02	
1210	7.64	15.4	990	4.1	0.41	-165.2	186	12.19	7.00	
1215	7.67	15.9	985	4.0	0.40	-166.7	180	12.19	1.71	
1220	7.67	15.7	986	4.'t	0.40	-167.5	180	12.19	1.66	
1221	collect	ed Sar	mple		_		1			
12237	End	1						1.1.1		
che orogzy										
						1				
									-	
Total Pump T	ime (min):	25	Total Purge V	/olume (gal) :	21,25		Review Date	: 04-17-24	(
Weather:	700	PF. SU	my wir				Review By	· V·		
		,						0		
Comments:		_	PH = 7.4	-7.9	_	_		V		
Bottle	s Filled	Preserv	ative Codes:	A-NONE B-	HNO3 C-H25	04 D - NaOH	E-HCIF			
		1	Preservative	Filtered V/M	0			Preservative Code	Filtered Y/N	
Quantity 2	Size	Type HDPE	Code	Filtered Y/N	Quantity	Size	Туре	code	Pillered 1/N	
nnm	125mL	TIDPE	A							
1	25gnl	1	A	t	-					
**		1.6.1		high Malana						
* Pump rate sho	ula be <500 mL/r	nin for low-flow	and <1 gal/min for	nign volume.						

Consumers Energy Company Monitoring Well Sampling Worksheet

	RW-MW-1		Date <u>4.9.7</u>	24 /ell Material:	PVC	Control Numb	er 24-629	Galv. Steel	
Location <u>J</u>	R whitir	19		len material:	PVC	SS			
Purge Metho	d: 🗸	Peristaltic	Sub	omersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: Go	eotech	S/N:	1371					
QC SAMPLE:	M	IS/MSD	DUP	_	Sonde ID:	<u> </u>	19H	20M21G	22J
Depth-to-wat	ter T/PVC (ft)	12.50	Depth-To-Bo	ottom T/PVC (ft) <u>88. 84</u>	5	Completed by	<u>cle</u>	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/-10mV	*	< 0.33	+/- 10%
		1	Stablizatio	n parameters f	or the last thre	e readings			
1240	star	ter por	np				220	12.52	
1245	9.12	14.6	1016	35.0	3.54	-156.0	220	12.52	2.17
1250	8.48	14.8	1084	17.2	1.73	-198.4	220	12.52	2.18
1255	8.00	14.7	1131	8.9	0.90	-201.4	220	12.52	2.08
1300	7.81	14.5	1159	5.3	0.54	-205.2	220	12.52	2.13
1305	7.74	14.6	1168	4.5	0.46	-206.8	220	12.52	2.08
1310	7.72	14.5	1168	પ.1	0.41	-209.9	220	12.52	1.90
1315	07.70	14.5	1169	3.9	0.39	-211.1	220	12.52	2.03
1320	7.69	14.5	1171	3.8	0.39	-211.2	220	12.52	2.00
1321	collec.	ter Sa	mpe						
1323	enP								
						-			
								1	
						1		11.57	
Total Pump	Time (min):	41	Total Purge V	olume (gal) :	22.5		Review Date:	04-17-2	4
Weather:	700	F, Sunn	y, wind				Review By:	Y.	
1000				5				1	
Comments:	-	PF	1=7.4.8.	Z				-	
Bottle	es Filled	Preservat	tive Codes:	A-NONE B-	HNO3 C-H2S	04 D - NaOH I	E-HCIF		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	12SML	HDPE	B						
1 -	12SML	1	A			1		1	
1	250ML	X	A						
* Pumn rate she	ould be <500 mL/n	in for low-flow a	nd <1 aal/min for	hiah Volume					

Laboratory Se	rvices			Consumers Ene itoring Well Sa					
Well ID <u> </u>	SRW MW	-16005	Date 4.9 .		PVC	Control Num	ber <u>スႷっ の</u> Iron	356-05 Galv. Steel	
Purge Method		Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er
Depth to Wat	er Tape: So	linst 101	P7 5/N	: LS0300	24				
QC SAMPLE:		MS/MSD	DUP_	_	Sonde ID:	15M	19H	20M V21G	22J
Depth-to-wat	er T/PVC (ft)	15.25	Depth-To-B	ottom T/PVC (ft) <u>91.40</u>	_	Completed b	KDR	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
11:07	steel	1		on parameters f	or the last thre	e readings	300	15-20	
11:23	Starte	Contraction of the second	1.2.2.1.2.2.	241	200	1110	300	15.29	2 02
11:27	7.65	13.9	851	24.1	2.44	+16.0	300	15.29	2.93
11:31	7.63	13.5	845	13.7	1.42	+54.5	300	15.29	5.44
11.35	7.63	13.6	844	12.6	1.30	+66.2	300	15.29	5.21
11:39	7.63	13.6	844	11.3	1.18	+75.9	300	15.29	5.02
11:43	7.62	13.7	845	10.6	1.69	+82.9	300	15.29	4.99
11.47	7.62	13.6	844	9.5	6.99	+89.8	300	15.29	5.07
11:51	7.62	13.7	844	8.7	0.89	+95.2	300	15.29	5.15
11:55	7.62	13.7	844	8.1	0.83	+92.7	300	15.29	5.20
11:59	7.63	13.7	844	6.9	0.71	+93.2	300	15.29	5.31
		13.8		6.3	0.65	+92.7	300	15.29	5.39
12:07	7.63	13.7	843	6.3	6.64	+91.5	300	15.29	5.40
12:08	Collec	ited sa	mple						
the second s		sample		tion					_
Total Pump T	ime (min): L	15	Total Purge \	/olume (gal) :	~ 3.5		Review Date:	04-17.	24
Weather:		, Sunny					Review By:		
Commenter		1	1 - 11 /					1	
Comments:	Anna a								
Bottle	s Filled	Preservat	tive Codes:	A-NONE B-I	HNO3 C-H2S	04 D - NaOH	E - HCI F -	[
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	125mL	HPPE	B	N					
1	125mL		A						
	250nl	+	A	*					
* Pump rate sho	uld be <500 mL/r	nin for low-flow a	nd <1 gal/min for	high Volume.			1		

Laboratory Ser	vices			Consumers Ene toring Well Sa	and the large state of the	C			
Well ID <u>う</u> R Location		1-16006	Date <u>4.9</u> .		PVC	Control Numb	er <u>24-02</u> Iron	5 <u>6-06</u> ,-0 Galv. Steel	57
Purge Method		Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er
Depth to Wate	er Tape: So	linst 10	1 87 S/N	: LS0300	624				
QC SAMPLE:		IS/MSD	V DUP	1.	Sonde ID:	15M	19H	20M 21G	22J
Depth-to-wate	er T/PVC (ft)	14.16	Depth-To-B	ottom T/PVC (ft) 91.68	-	Completed b	KDR	
Time	рН	Тетр	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
10:11	Staste	d Pump		on parameters fo	or the last thre	e readings	192	14.18	
	7.43		815	201	4.05	0.741	1 C		2.03
10:15		(3.5		39.6		+107.0	192	14.18	
10:19	7.42	13.3	815	16.4	1.70	+111.3	192	14.18	2.19
10:23	7.43	13.2	814	13.2	1.38	+112.3	192		2.10
	7.46	13.3	814	12.7	1.32	+(11.8	192	14.18	2.16
10:31	7.50	13.3	814	11.8	1.23	+108.7	192	14.18	2.24
10:35	7.54	13.4	813	9.4	0.97	+79.1	192	14.18	2.37
10:39	7.58	13.5	814	6.9	0.72		192	14.18	2.51
10:43	7.64	13.5	814	5.8	0.60	-94.1	192	14.18	6.52
10:47	7.69	13.5	814	5.2	0.53		192	14.18	6.67
10:51		13.6	814	4.8	0.50	-138.2	192	14.18	6.75
10:55		13.5		4.6			192	14.18	6.84
10:59	7.73	13.7	815	4.5	0.47	-142.9	192	14.18	6.91
11.00	collec	ted san	mple						
11:10	End	sample	collec	tion					
Total Pump Ti	ime (min): 4	9	Total Purge V	olume (gal) : '	~2.5		Review Date:	04-17-	24
Weather:	55°F1	Sunny, u	ybrin				Review By:	Y	1
Comments:			1					0	
comments.	-						-	-	_
Bottles	s Filled	Preservati		A-NONE B-H	INO3 C-H2S	04 D - NaOH I	E - HCI F	Preservative	
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
3	125mL	HDPE	B	Y					
22	125nL 250mL	t	A						
d	ADDAL	Y	A	*					
* Pump rate shou	uld be <500 mL/m	nin for low-flow an	d <1 gal/min for	high Volume.					

Laboratory Se				Consumers Ene toring Well Sa							
Well ID Location Purge Metho	IR whiti	Peristaltic		<u> 2 </u>	Control Number <u>24 - 6256 - 08</u> PVC SS Iron Galv. Steel Bladder Fultz Bailer						
Depth to Wat	er Tape:		S/N								
QC SAMPLE:		IS/MSD	DUP_	_	Sonde ID:15M19H20M21G22J						
Depth-to-wat	er T/PVC (ft)		Depth-To-B	ottom T/PVC (ft)	-	Completed by	y CIE			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
			Stablizatio	on parameters fo	or the last three	readings					
221220	1. 1. 2. 6		1.0			_	1 1 1 2 1 1				
Total Pump		-	Total Purge V		-		Review Date:				
Weather:	70	°F, SUNT	y, win	D			Review By:	Y			
Comments:								0			
Bottle	es Filled	Preserva	tive Codes:	A-NONE B-H	INO3 C - H2SC	4 D - NaOH	E-HCIF-				
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N		
1	125mL	HDPE	B	N							
1	¥	1	A		1 ·····						
1	250ML	Ŧ	A	.+							
* Pump rate sho	ould be <500 mL/m	nin for low-flow a	nd <1 gal/min for	high Volume.							

Laboratory Se	the .			Consumers End toring Well Sa							
	FB-02 JRWhit		Date <u>4.9</u> , V	2 <u>니</u> Vell Material:	PVC	Control Num	ber <u>24-02</u> Iron	5 <u>し-09</u>] Galv. Steel			
Purge Methoo	d:	Peristaltic	Sul	omersible	Blad	Bladder Fultz Bailer					
Depth to Wat	er Tape:		S/N	:							
QC SAMPLE:	. N	MS/MSD DUP Sonde ID: 15M _19H _20M _21G				5 <u>22</u> J					
Depth-to-wat	o-water T/PVC (ft) Depth-To-Bottom T/				/C (ft) Completed by						
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3% Stablizatio	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV readinas	*	< 0.33	+/- 10%		
1335		cted S									
Total Pump T		-	Total Purge V				Review Date:		24		
Weather:		F, SUN	ny, win	D			Review By:	Y.			
Comments:		100 M 100 M							-		
Bottle	s Filled	Preserva	tive Codes:	A - NONE B - I	INO3 C - H2SO	4 D - NaOH	E - HCI F -				
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N		
1	12SML	HDPE	B	N							
1	250ml	Ţ	A D	\downarrow							
* Pump rate sho	uld be <500 mL/m	nin for low-flow a	nd <1 gal/min for l	high Volume.							

Appendix B Second Semiannual Monitoring Report

January 30, 2025

Brett Coulter, CPG, District Geologist EGLE, Materials Management Division State Office Building 301 East Louis Glick Highway Jackson, MI 49201 via email: <u>CoulterB1@michigan.gov</u>

TRANSMITTAL OF GROUNDWATER MONITORING RESULTS FOR JR WHITING SOLID WASTE DISPOSAL AREA; WDS NO. 397664

Dear Mr. Coulter,

Please find attached the following:

Document	Date
Second Semiannual 2024 Groundwater	January 30, 2025
Monitoring Report for the JR Whiting Solid	
Waste Disposal Area	
Second Semiannual 2024 Laboratory Analysis	January 30, 2025
Data Spreadsheet	

The attached document(s) are prepared in conformance with:

Document	Date
Solid Waste Disposal Area Operating License;	May 11, 2020
Consumers Whiting Plant Impoundments;	
Waste Disposal System Number 397664;	
License Number 9601	
Hydrogeological Monitoring Plan, Consumers	May 6, 2020
Power Company, dated May 6, 2020	
Michigan Department of Environment, Great	July 5, 2013
Lakes, and Energy Policy Memorandum	
OWMRP-115-29: Format for Solid Waste	
Disposal Facility Monitoring Submittals	

Consumers Energy

1945 W. Parnall Road Jackson, MI 49201 www.consumersenergy.com **Environmental Quality & Sustainability**

Please contact me if you have any questions regarding this transmittal.

Sincerely,

Harold D. Legister

Harold D. Register, Jr., P.É. Sr. Principal Environmental Engineer Phone: (517) 788-2982 Email: <u>harold.registerjr@cmsenergy.com</u>

cc Gary Schwerin, EGLE (via email)

Second Semiannual 2024 Groundwater Monitoring Report

Former JR Whiting Power Plant Pond 1 & 2 and Pond 6

Erie, Michigan

January 2025

Heleston

Sarah B. Holmstrom, P.G. Sr. Project Manager

Prepared For: Consumers Energy

Prepared By: TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

1 B m

Vincent E. Buening, C.P.G. Sr. Hydrogeologist

TABLE OF CONTENTS

1.0	Introduction1			
	1.1	Statement of Adherence to Approved Hydrogeological Monitoring Plan	1	
	1.2	Program Summary	1	
	1.3	Site Overview	2	
	1.4	Geology/Hydrogeology	2	
2.0	Groundwater Monitoring4			
	2.1	Monitoring Well Network	4	
	2.2	October 2024 Groundwater Monitoring	4	
		2.2.1 Data Quality Review	5	
		2.2.2 Groundwater Flow Rate and Direction	6	
		2.2.2.1 Pond 1 & 2	6	
		2.2.2.2 Pond 6	7	
3.0	Statistical Evaluation			
	3.1	Establishing Background Limits	8	
		3.1.1 Pond 1 & 2		
		3.1.2 Pond 6	8	
	3.2	Data Comparison to Background Limits – Pond 1 & 2 Semiannual Event (October		
		2024)	8	
	3.3	Data Comparison to Background Limits – Pond 6 Semiannual Event (October 2024	`	
			9	
4.0	Con	Conclusions and Recommendations10		
5.0	References11			

TABLES

Table 1	Potentiometric Groundwater Elevation Summary – October 2024
Table 2	Summary of Field Parameters – October 2024
Table 3	Comparison of Groundwater Detection Monitoring Parameter Results to
	Background Limits – October 2024 (Pond 1 & 2)
Table 4	Comparison of Groundwater Detection Monitoring Parameter Results to
	Background Limits – October 2024 (Pond 6)
Table 5	Summary of Statistical Exceedances – October 2024

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan with CCR Monitoring Well Locations
Figure 3	Groundwater Potentiometric Elevation Summary – October 2024

APPENDICES

- Data Quality Reviews Laboratory Reports Appendix A
- Appendix B Appendix C
- Field Notes

1.0 Introduction

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. Standards for groundwater monitoring and corrective action codified in the CCR Rule (40 CFR 257.90-98) apply to the Consumers Energy Company (Consumers Energy) Ponds 1 and 2 (closed surface impoundment monitored as Pond 1 & 2 using a multiunit groundwater monitoring system) and Pond 6 (closed inactive surface impoundment) at the former JR Whiting (JRW) Power Plant Site (the Site). Prior to the CCR Rule, from about 2009 to 2016, JR Whiting followed the approved groundwater monitoring waiver.

On December 28, 2018, the State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (a.k.a., Michigan Part 115 Solid Waste Management). The December 2018 amendments to Part 115 were developed to provide the State of Michigan oversight of CCR impoundments and landfills and to better align existing state solid waste management rules and statutes with the CCR Rule. On August 8, 2019, Consumers Energy submitted a revised *JR Whiting Hydrogeological Monitoring Plan, former JR Whiting Power Plant, Erie, Michigan* (2020 HMP) (TRC, May 2020 Revision) to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) to comply with the requirements of Part 115, Rule 299.4905, and the CCR Rule. The HMP was approved by the EGLE on May 11, 2020.

1.1 Statement of Adherence to Approved Hydrogeological Monitoring Plan

This JR Whiting Second Semiannual 2024 Groundwater Monitoring Report (Report) has been prepared by TRC on behalf of Consumers Energy to present groundwater monitoring data collected from the JR Whiting Pond 1 & 2 and Pond 6 during the fourth calendar quarter of 2024. This report was prepared in accordance with the items listed in Appendix A (Solid Waste Monitoring Submittal Components) of the July 5, 2013 Michigan Department of Environmental Quality – Office of Waste Management and Radiological Protection (MDEQ-OWMRP), now the EGLE Materials Management Division (MMD), communication prescribing the format for solid waste disposal facility monitoring submittals. All references herein to the EGLE are inclusive of the MDEQ. Groundwater sampling, analysis, and information contained in this report was prepared in adherence to the 2020 HMP.

1.2 Program Summary

Historically groundwater monitoring at JRW was performed under the HMP last revised on November 26, 1997, until the groundwater monitoring waiver was approved on September 2, 2009. It was then again performed pursuant to the CCR Rule beginning in 2016 until implementation of the 2020 HMP, at which time monitoring began to be conducted in accordance with both regulatory programs. In the *First Semiannual 2024 Groundwater Monitoring Report* for the JRW Pond 1 & 2 and Pond 6 (First Semiannual 2024 Report) (TRC, July 2024), Consumers Energy reported that no potential statistically significant increases (SSIs) were noted during the first 2024 semiannual detection monitoring event. Therefore,

Consumers Energy continued detection monitoring in the second half of 2024 at Pond 1 & 2 and Pond 6 pursuant to §257.94 of the CCR Rule and the HMP.

This Report presents the monitoring results and the statistical evaluation of the detection monitoring constituents (Section 11511a(3)(c) of Part 115) for the October 2024 semiannual groundwater monitoring event for Pond 1 & 2 and Pond 6. Detection monitoring was performed in accordance with the 2020 HMP. As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify SSIs of detection monitoring constituents compared to background levels.

1.3 Site Overview

The JR Whiting Plant was a coal-fired power generation facility located in Erie, Michigan, on the western shore of Lake Erie (Figure 1). The plant began producing electricity in 1952 from Units 1 and 2, with Unit 3 beginning operation in 1953. The plant ceased operation in April 2016. Figure 1 is the site location map showing the facility and the surrounding area. Site features are shown on Figure 2.

The JR Whiting Ash Disposal Area is licensed under Michigan Part 115 of the Natural Resources and Environmental Protection Act (NREPA), PA 451 of 1994, as amended.

Pond 1 & 2 is located to the east of the plant, north of the discharge canal, south of Erie Road, and west of Lake Erie and constructed in native clay soil. It was historically used for wet ash sluicing. In 2019, it received its final cover system constructed pursuant to 40 CFR 257.102(a); the Pond 1 & 2 Closure Construction Quality Assurance (CQA) Plan dated August 31, 2017; the Part 115 Administrative Rules; and Pond 1 & 2 Closure Plan submitted to the EGLE on December 18, 2017. The closure of Pond 1 & 2 was certified by the EGLE in a letter dated August 27, 2020.

Pond 6 is located to the north of the plant and was constructed in native clay soil. It was an inactive surface impoundment at the time the CCR Rule became effective on October 19, 2015, and was capped with a final cover certified pursuant to the CCR Rule on December 5, 2017, and certified by the EGLE on August 24, 2018.

1.4 Geology/Hydrogeology

Pond 1 & 2 and Pond 6 are located adjacent to Lake Erie. The subsurface materials encountered at the JR Whiting site are predominately clay-rich till. The surficial CCR fill material is underlain by approximately 40 to 50 feet of laterally extensive clay-rich till that acts as a natural hydraulic barrier across the Site. Limestone bedrock is present beneath the till and is considered the uppermost aquifer at the Site.

Groundwater present within the uppermost aquifer is typically encountered at Pond 1 & 2 and Pond 6 around 70 to 80 feet below ground surface (ft bgs), approximately 510 to 520 feet above mean sea level (AMSL), in the limestone (beneath the till). The uppermost aquifer is confined and protected from CCR constituents by the 40- to 50-foot-thick overlying clay-rich aquitard that interfaces with the limestone at the elevation range of 510 to 520 feet AMSL. Potentiometric

surface elevation data from groundwater within the CCR monitoring wells represents the levels in which groundwater rises under hydrostatic pressure within each well and exhibit an extremely low hydraulic gradient across the Site with no consistent or discernible flow direction.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

A groundwater monitoring system has been established for Pond 1 & 2 and Pond 6 for the purpose of detection monitoring. The detection monitoring well network for Pond 1 & 2 and Pond 6 currently consists of six monitoring wells for each CCR unit that are screened in the uppermost aquifer. Monitoring well locations are shown on Figure 2.

As discussed in the HMP, intrawell statistical methods for JR Whiting were selected based on the geology and hydrogeology at the Site (primarily the presence of clay/hydraulic barrier, no apparent flow direction and lack of flow potential across the aquifer), in addition to other supporting lines of evidence that the aquifer is unaffected by the CCR unit (such as the consistency in concentrations of water quality data and similarities in concentrations in wells JRW-MW-16007 through JRW-MW-16009 and the Pond 1 & 2 and Pond 6 monitoring wells).

An intrawell statistical approach requires that each downgradient well doubles as the background and compliance well, where data from each individual well during a detection monitoring event is compared to a statistical limit developed using the background dataset from that same well. Monitoring wells JRW-MW-15001 through JRW-MW-15006 are located around the perimeter of Pond 1 & 2 and monitoring wells JRW-MW-16001 through JRW-MW-16006 are located around the perimeter of Pond 6. These monitoring wells provide data on both background and downgradient groundwater quality that has not been affected by the CCR unit (a total of six background/downgradient monitoring wells for each pond).

As shown on Figure 2, monitoring wells JRW-MW-16007 through JRW-MW-16009 are used for water level measurements only. These wells were initially installed as potential background monitoring wells during the initial stages of characterizing the Site. However, based on further hydrogeological characterization of the uppermost aquifer, an intrawell statistical approach was selected, which does not rely on JRW-MW-16007 through JRW-MW-16009 for statistical evaluation.

No monitoring wells have been installed or decommissioned since the previous monitoring event.

2.2 October 2024 Groundwater Monitoring

Consumers Energy Laboratory Services personnel performed gauging and sampling of monitoring wells associated with Pond 1 & 2 and Pond 6 on October 3, 2024. Groundwater monitoring was performed in accordance with the HMP. Groundwater samples collected during the October 2024 event were submitted to Consumers Energy Laboratory Services in Jackson, Michigan, for analysis of the following metals and inorganic indicator constituents:

Section 11511a(3)(c) – Detection Monitoring Constituents
Boron
Calcium
Chloride
Fluoride
Iron
рН
Sulfate
Total Dissolved Solids (TDS)

Static water level measurements that represent the potentiometric surface were collected at all locations after equilibration to atmospheric pressure. The depth to water was measured according to ASTM D 4750, "Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well" and recorded to the nearest 0.01 foot. Static water elevation data are summarized in Table 1.

Groundwater samples were collected using a peristaltic pump or submersible pump in accordance with low flow sampling protocol and were not field filtered to allow for total metals analysis. Groundwater field parameters included dissolved oxygen, oxidation reduction potential, pH, specific conductivity, temperature, and turbidity and are summarized on Table 2. All samples were collected in vendor-provided, nitric acid pre-preserved (metals only) and unpreserved sample containers and submitted to the laboratory for analysis. Consumers Energy followed chain of custody procedures to document the sample handling.

Consumers Energy collected quality assurance/quality control (QA/QC) samples from both CCR units, Pond 1 & 2 and Pond 6, during the October 2024 groundwater sampling event. The QA/QC samples per CCR unit consisted of one field blank, one equipment blank, one field duplicate (JRW-MW-15003 at Pond 1 & 2 and JHC-MW-16002 at Pond 6), and one field matrix spike/matrix spike duplicate (MS/MSD) sample (JRW-MW-15006 at Pond 1 & 2 and JHC-MW-16003 at Pond 6).

Groundwater analytical results from the semiannual monitoring event are summarized in Table 3 (Pond 1 & 2) and Table 4 (Pond 6). The laboratory analytical reports are included in Appendix B. Field records are included in Appendix C.

2.2.1 Data Quality Review

Data from each round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination. The data were found to be complete and usable for the purposes of the CCR monitoring program. Data quality reviews are summarized in Appendix A.

2.2.2 Groundwater Flow Rate and Direction

Groundwater elevation data collected during the background sampling events showed that the hydraulic gradient for groundwater within the uppermost aquifer is often so low that groundwater flow across Pond 1 & 2 and Pond 6 is frequently incalculable and often stagnant.

There are minor differences in hydraulic head across the monitoring wells (ranging from zero up to 0.15 feet across Pond 1 & 2 and up to 0.24 feet across Pond 6 from event to event from November 2016 through October 2024), indicating that the potentiometric surface is flat the majority of the time. In the few instances since November 2016 where a slight gradient was observed and calculable, the direction of the flow potential was highly variable event to event with flow directions slightly to the northwest, east, and northeast from Pond 1 & 2 and slightly to the south, west, and northeast from Pond 6.

The most pronounced groundwater gradient between November 2016 and October 2024 at Pond 1 & 2 was observed on December 19, 2016, which showed a slight horizontal gradient of approximately 0.00016 ft/ft to the northwest across Pond 1 & 2. For Pond 6, the most pronounced potentiometric head differential of 0.24 feet was observed on February 28, 2018, between JRW-MW-16001 on the north edge of Pond 6 and JRW-MW-16004 on the south edge of the Pond 6 CCR unit. Although, when considering the potentiometric surface elevation data from all of the Pond 6 CCR unit wells, the general groundwater flow direction inferred across the pond at that time is to the southwest, in order to be conservative, the maximum head difference was used to calculate the maximum groundwater flow velocity at the Pond 6 CCR unit throughout the background monitoring period. This results in a very slight horizontal gradient of approximately 0.000099 ft/ft to the south.

2.2.2.1 Pond 1 & 2

Although there was no clear flow direction when looking at water levels across the Pond 1 & 2 well network, the maximum groundwater gradient inferred on October 3, 2024, was calculated using well pair JRW-MW-15005/JRW-MW-15006 and JRW-MW-15002/JRW-MW-15006 to conservatively demonstrate the low groundwater flow rate potential. The head difference across Pond 1 & 2 ranged from 0.00 to 0.08 feet between monitoring wells, with a low calculated horizontal gradient of approximately 0.00012 ft/ft using the maximum head differential. Since both well pairs exhibited the same maximum head differential, the average of the two gradients was used in the calculation. Using the highest hydraulic conductivity measured at the Pond 1 & 2 monitoring wells of 20 feet/day (ARCADIS, 2016), and an assumed effective porosity of 0.1, this results in a maximum inferred groundwater flow rate of approximately 0.024 feet/day (approximately 9 feet/year). However, the actual gradient is much lower when considering the low head difference in the rest of the monitoring wells across Pond 1 & 2 and the lack of discernable flow direction. The Pond 1 & 2 groundwater potentiometric surface elevations measured during the October 2024 sampling event are provided on Table 1 and are summarized in plan view on Figure 3.

The extremely low gradient and lack of general flow direction is similar to that identified in previous monitoring rounds (since the background sampling events commenced in December 2016) and continues to demonstrate that the downgradient compliance wells are appropriately

positioned to detect the presence of detection monitoring constituents that could potentially migrate from Pond 1 & 2.

2.2.2.2 Pond 6

Although there was no clear flow direction when looking at water levels across the Pond 6 well network, the maximum groundwater gradient inferred on October 3, 2024, was calculated using well pair JRW-MW-16006/JRW-MW-16002 and JRW-MW-16003/JRW-MW-16004 to conservatively demonstrate the low groundwater flow rate potential. The head difference across Pond 6 ranged from 0.00 to 0.02 feet between monitoring wells, with a low calculated horizontal gradient of approximately 0.000025 ft/ft using the maximum head differential. Since both well pairs exhibited the same maximum head differential, the average of the two gradients was used in the calculation. Using the highest hydraulic conductivity measured at the Pond 6 CCR unit monitoring wells (11.9 feet/day from the 2016 TRC well installation report) and an assumed effective porosity of 0.1, this results in a maximum inferred groundwater flow rate of approximately 0.0030 feet/day (approximately 1.1 feet/year). Groundwater potentiometric surface elevations measured during the October 2024 sampling event are provided on Table 1 and are summarized in plan view on Figure 3.

The extremely low gradient and/or lack of a consistent or discernable general flow direction is similar to that identified in previous monitoring rounds since the background sampling events commenced in November 2016 and continues to demonstrate that the downgradient compliance wells are appropriately positioned to detect the presence of detection monitoring constituents that could potentially migrate from the JRW Pond 6.

3.0 Statistical Evaluation

Detection monitoring is continuing at JR Whiting Pond 1 & 2 and Pond 6 in accordance with the HMP. The following section summarizes the statistical approach applied to assess the semiannual groundwater data in accordance with the detection monitoring program.

3.1 Establishing Background Limits

3.1.1 Pond 1 & 2

Per the HMP, background limits were established for the detection monitoring constituents using data collected from each of the six established detection monitoring wells (JRW-MW-15001 through JRW-MW-15006). The background limits for each monitoring well have been calculated using thirteen rounds of data collected from November 2016 through March 2019 as presented in detail in the 2019 Annual Report (TRC, January 2020). These background limits will continue to be used throughout the detection monitoring program to determine whether groundwater has been impacted from Pond 1 & 2 by comparing concentrations in the detection monitoring wells to their respective background limits for each detection monitoring constituent, with the exception of iron.

Iron was incorporated into the monitoring program as part of the 2020 HMP. The initial background limits for iron have been calculated using data collected through the October 2023 event as presented in detail in the Second Semiannual 2023 Report (TRC, 2023). These iron background limits are used to compare to iron groundwater results beginning with the first semiannual 2024 detection monitoring event.

3.1.2 Pond 6

Per the HMP, background limits were established for the detection monitoring constituents using data collected from each of the six established detection monitoring wells (JRW-MW-16001 through JRW-MW-16006). The statistical evaluation of the background data is presented in the Pond 6 July 2019 Annual Report (TRC, 2019). The detection monitoring background limits for each monitoring well will continue to be used throughout the detection monitoring period to determine whether groundwater has been impacted from Pond 6 by comparing concentrations in the detection monitoring wells to their respective background limits for each detection monitoring constituent, with the exception of iron.

Iron was incorporated into the monitoring program as part of the 2020 HMP. The initial background limits for iron have been calculated using data collected through the October 2023 event as presented in detail in the Second Semiannual 2023 Report (TRC, 2023). These iron background limits will be used to compare to iron groundwater results beginning with the first semiannual 2024 detection monitoring event.

3.2 Data Comparison to Background Limits – Pond 1 & 2 Semiannual Event (October 2024)

The concentrations of the constituents in each of the Pond 1 & 2 detection monitoring wells (JRW-MW-15001 through JRW-MW-15006) were compared to their respective statistical

background limits calculated from the background data collected from each individual well (i.e., monitoring data from JRW-MW-15001 is compared to the background limit developed using the background dataset from JRW-MW-15001, and so forth). The comparisons are presented on Table 3.

There were no exceedances relative to the statistical limits; therefore, there are no SSIs compared to background for any of the constituents. As no SSIs were identified, detection monitoring will be continued in accordance with the HMP. Per the EGLE prescribed submittal format, a statistical exceedances summary is included as Table 5 that reflects the four most recent monitoring events.

3.3 Data Comparison to Background Limits – Pond 6 Semiannual Event (October 2024)

The data comparisons of the Pond 6 monitoring wells JRW-MW-16001 through JRW-MW-16006 to their respective statistical background limits are presented on Table 4.

There were no exceedances relative to the statistical limits; therefore, there are no SSIs compared to background for any of the constituents. As no SSIs were found, detection monitoring will be continued at the Pond 6 CCR unit in accordance with the HMP. Per the EGLE prescribed submittal format, a statistical exceedances summary is included as Table 5 that reflects the four most recent monitoring events.

4.0 Conclusions and Recommendations

No SSIs occurred at Pond 1 & 2 or Pond 6 during the October 2024 monitoring event; therefore, Consumers Energy will continue with the detection monitoring program in conformance with the HMP. No corrective actions were needed or performed for either Pond 1 & 2 or Pond 6. The next semiannual monitoring event at the JR Whiting Pond 1 & 2 and Pond 6 CCR units is scheduled for the second calendar quarter of 2025.

5.0 References

- ARCADIS. May 13, 2016. Summary of Monitoring Well Design, Installation, and Development. JR Whiting Electric Generation Facility – Erie, Michigan. Prepared for Consumers Energy Company.
- TRC Environmental Corporation. December 2016. 2016 Monitoring Well Design, Installation, Development, and Decommissioning. JR Whiting Electric Generation Facility – Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. July 2019. Annual Groundwater Monitoring Report JR Whiting Pond 6, Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. January 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report Former JR Whiting Power Plant Pond 1 & 2 and Pond 6, Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. February 2020a. Electric Generation Facilities RCRA CCR Detection Monitoring Program for the Pond 1 & 2 and Pond 6 Areas. Sample and Analysis Plan. JR Whiting Monitoring Program – Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. February 2020b. Groundwater Statistical Evaluation Plan Former JR Whiting Power Plant, Pond 1 & 2 and Pond 6, Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. May 2020 Revision. Consumers Energy JR Whiting Hydrogeologic Monitoring Plan (HMP). Prepared for Consumers Energy Company.
- TRC. October 2023. Second Semiannual 2023 Groundwater Monitoring Report Former JR Whiting Power Plant, Pond 1 & 2 and Pond 6 CCR Unit, Erie, Michigan. Prepared for Consumers Energy Company.
- TRC. July 2024. First Semiannual 2024 Groundwater Monitoring Report Former JR Whiting Power Plant, Pond 1 & 2 and Pond 6 CCR Unit, Erie, Michigan. Prepared for Consumers Energy Company.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

Tables

Table 1 Potentiometric Groundwater Elevation Summary – October 2024 JR Whiting Pond 1 & 2 and Pond 6 Erie, Michigan

	Ground	тос					Scree	en In	terval	Octobe	r 3, 2024
Well Location	Surface Elevation (ft)	Elevation (ft)	Elevation Geologic Unit of		t BGS	al Depth S)		evati (ft)		Depth to Water	Groundwater Elevation
										(ft BTOC)	(ft)
Static Water Level Mon	itoring Wells										
JRW-MW-16007	579.47	582.31	Limestone	68.0	to	78.0	511.5	to	501.5	6.69	575.62
JRW-MW-16008	579.95	582.83	Limestone	68.0	to	73.0	512.0	to	507.0	7.23	575.60
JRW-MW-16009	579.90	582.60	Limestone	69.0	to	79.0	510.9	to	500.9	7.00	575.60
Pond 1 & 2											
JRW-MW-15001 ⁽¹⁾	590	581.39	Limestone	78.0	to	88.0	512.7	to	502.7	5.79	575.60
JRW-MW-15002 ⁽¹⁾	590	590.17	Limestone	81.0	to	91.0	511.3	to	501.3	14.56	575.61
JRW-MW-15003 ⁽¹⁾	590	587.23	Limestone	81.0	to	91.0	510.4	to	500.4	11.63	575.60
JRW-MW-15004 ⁽¹⁾	590	589.32	Limestone	86.0	to	96.0	506.5	to	496.5	13.72	575.60
JRW-MW-15005 ⁽¹⁾	590	588.28	Limestone	86.0	to	96.0	508.3	to	498.3	12.66	575.62
JRW-MW-15006 ⁽¹⁾	590	580.48	Limestone	81.0	to	91.0	511.0	to	501.0	4.94	575.54
Pond 6			•								
JRW-MW-16001	589.19	592.33	Limestone	71.0	to	81.0	518.2	to	508.2	16.72	575.61
JRW-MW-16002	585.78	588.69	Limestone	81.0	to	91.0	504.8	to	494.8	13.09	575.60
JRW-MW-16003	586.19	589.01	Limestone	73.0	to	83.0	513.2	to	503.2	13.39	575.62
JRW-MW-16004	586.48	589.34	Limestone	75.0	to	85.0	511.5	to	501.5	13.75	575.59
JRW-MW-16005	589.29	592.14	Limestone	78.0	to	88.0	511.3	to	501.3	16.52	575.62
JRW-MW-16006	588.26	591.04	Limestone	79.0	to	89.0	509.3	to	499.3	15.42	575.62

Notes:

Top of casing elevation survey was conducted by Rowe Professional Services Company in July 2020.

Elevation in feet relative to North American Vertical Datum 1988 (NAVD 88).

TOC: Top of well casing.

ft BTOC: Feet below top of well casing.

ft BGS: Feet below ground surface.

(1) Screen interval depth below ground surface for Pond 1&2 monitoring wells approximated using an estimated final capped ground surface elevation of 590 feet above mean sea level. Screen interval elevations were measured using the original survey conducted by Sheridan Surveying Co. November 2015 at the time of monitoring well installation.

Table 2Summary of Field Parameters – October 2024JR WhitingErie, Michigan

Sample Location	Sample Date	Dissolved Oxygen	Oxidation Reduction Potential	рН	Specific Conductivity	Temperature	Turbidity
		(mg/L)	(mV)	(SU)	(umhos/cm)	(°C)	(NTU)
JR Whiting Pond 1 & 2	2						
JRW-MW-15001	10/3/2024	0.40	-127.9	7.6	1,078	15.7	7.6
JRW-MW-15002	10/3/2024	0.22	-162.6	7.6	1,111	13.4	4.3
JRW-MW-15003	10/3/2024	0.49	-17.1	7.6	984	13.9	7.9
JRW-MW-15004	10/3/2024	1.38	46.9	7.5	949	15.2	4.8
JRW-MW-15005	10/3/2024	1.01	57.8	7.7	874	15.0	3.5
JRW-MW-15006	10/3/2024	0.37	-138.9	7.7	967	16.7	7.5
JR Whiting Pond 6							
JRW-MW-16001	10/3/2024	0.50	-154.6	8.1	746	14.8	4.9
JRW-MW-16002	10/3/2024	0.44	-147.9	7.6	1,004	13.9	4.0
JRW-MW-16003	10/3/2024	0.39	-165.9	7.7	970	13.8	2.2
JRW-MW-16004	10/3/2024	0.36	-200.4	7.7	1,149	14.1	2.0
JRW-MW-16005	10/3/2024	0.50	35.2	7.3	850	14.2	1.2
JRW-MW-16006	10/3/2024	0.51	-155.6	7.8	809	14.0	1.3

Notes:

mg/L -Milligrams per Liter. mV - Millivolts. SU - Standard Units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius.

NTU - Nephelometric Turbidity Unit

Table 3 Comparison of Groundwater Detection Monitoring Parameter Results to Background Limits – October 2024 JR Whiting Pond 1 & 2 Erie, Michigan

Sa	ample Location:	JRW-M	W-15001	JRW-M	W-15002	JRW-MV	V-15003	JRW-M	N-15004	JRW-MV	V-15005	JRW-MV	N-15006
	Sample Date:	10/3/2024	PL	10/3/2024	Ы	10/3/2024	PL	10/3/2024	PL	10/3/2024	PL	10/3/2024	PL
Constituent	Unit	Data	FL										
Appendix III													
Boron	ug/L	184	240	198	220	201	230	214	270	190	270	185	250
Calcium	mg/L	138	180	135	180	113	160	113	140	109	120	120	140
Chloride	mg/L	48.9	55	46.4	56	45	55	48.3	56	33.8	46	45.4	53
Fluoride	ug/L	1,130	1,600	1,250	1,900	1,270	1,800	1,210	1,800	1,150	1,700	1,180	1,700
pH, Field	su	7.6	6.8 - 8.2	7.6	7.2 - 7.9	7.6	7.3 - 8.3	7.5	7.0 - 8.0	7.7	7.3 - 8.6	7.7	7.0 - 9.0
Sulfate	mg/L	411	470	421	500	356	440	340	390	309	350	355	410
Total Dissolved Solid	s mg/L	982	1,000	952	1,100	748	940	776	880	696	840	816	920
Part 115 Parameters	6												
Iron	ug/L	852	1,800	776	1,200	122	820	112	490	51	660	1,020	1,900

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter. SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

RESULT Shading and bold font indicates a confirmed exceedance of the Prediction Limit (PL).

Table 4 Comparison of Groundwater Detection Monitoring Parameter Results to Background Limits – October 2024 JR Whiting Pond 6 Erie, Michigan

Sa	mple Location:	JRW-MV	V-16001	JRW-M	W-16002	JRW-MV	V-16003	JRW-MV	V-16004	JRW-MV	V-16005	JRW-M	N-16006
	Sample Date:	10/3/2024	PL										
Constituent	Unit	Data	L L	Data		Data	ΓL.	Data	L L	Data	ΓL	Data	FL I
Appendix III													
Boron	ug/L	159	203	161	209	208	257	188	262	202	244	172	226
Calcium	mg/L	82.3	111	133	149	115	156	141	181	97.2	182	96.9	117
Chloride	mg/L	19.3	23.6	21.6	25.4	26.9	32.4	38.8	43.7	24.8	29.4	24.2	38.6
Fluoride	ug/L	1,260	2,300	< 1,000	1,400	1,140	1,600	1,180	1,700	1,310	1,800	1,270	2,200
pH, Field	su	8.1	7.5 - 8.9	7.6	7.5 - 8.3	7.7	7.4 - 7.9	7.7	7.4 - 8.2	7.3	7.0 - 8.0	7.8	7.5 - 8.2
Sulfate	mg/L	256	278	416	426	395	470	481	507	297	498	304	399
Total Dissolved Solids	s mg/L	614	770	784	832	772	1,040	938	1,110	656	1,030	692	904
Part 115 Parameters													
Iron	ug/L	135	230	306	510	429	630	320	750	46	940	328	400

Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

All metals were analyzed as total unless otherwise specified. **Bold** font indicates an exceedance of the Prediction Limit (PL). **RESULT** Shading and bold font indicates a confirmed exceedance of the PL.

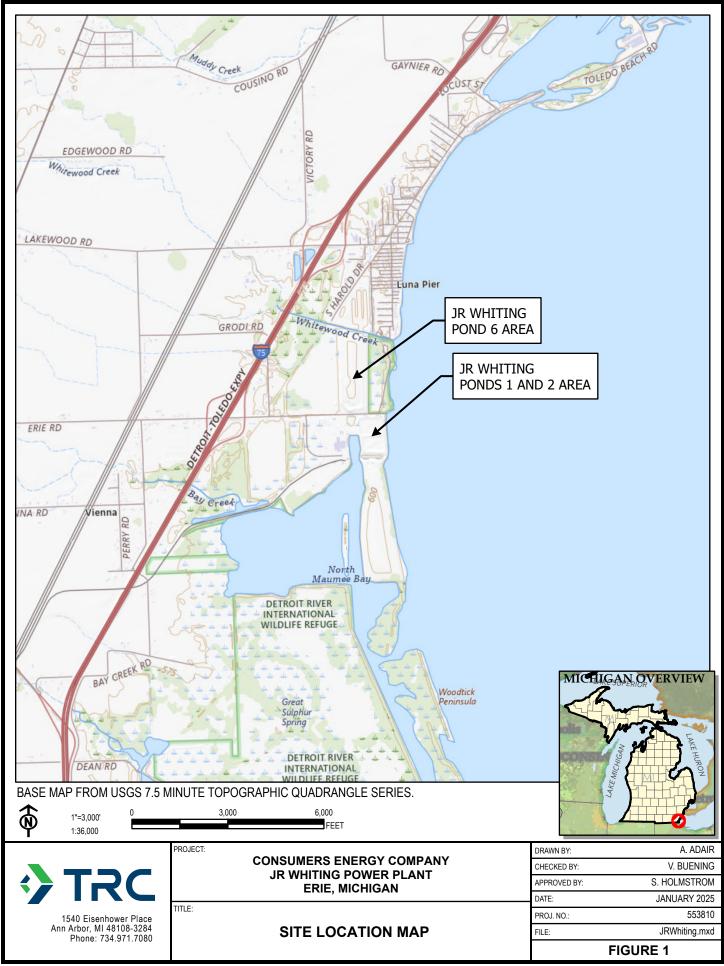
Table 5 Summary of Statistical Exceedances - October 2024 JR Whiting Pond 1 & 2 and Pond 6 Erie, Michigan

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY SUMMARY OF STATISTICAL EXCEEDANCES

Data is in (X) ug/L or () mg/L unless otherwise stated

Facility: JR Whiting - WDS# 397664

Well #	Location	Parameter	Part 201 GRCC	Statistical Limit (or 'CC' for Control Charts)	4 Qtr. 2024 (bold >201)	2 Qtr. 2024 (bold >201)	4 Qtr. 2023 (bold >201)	2 Qtr. 2023 (bold >201)
JRW-MW-15005	JR Whiting Pond 1 & 2	Calcium	NC	120	109	113	114	121 ⁽¹⁾

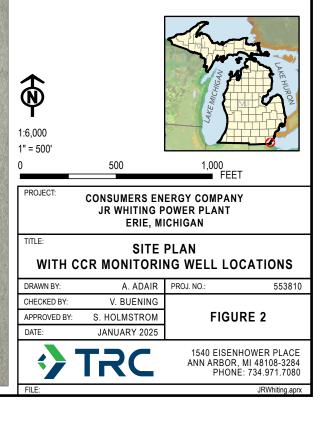

NOTES:

NC = No Criteria

(1) Exceedance was determined to be from natural variability as detailed in the Alternate Source Demonstration: April 2023 Detection Monitoring Event, Former JR Whiting Power Plant Ponds 1 and 2, Erie, Michigan dated July 14, 2023.

Figures

T:\1-PROJECTS\Consumers_Energy\514397_JRWhiting\2-APRX\JRWhiting.aprx -- Saved By: AADAIR on 12/20/2024, 12:04:37 PM


•

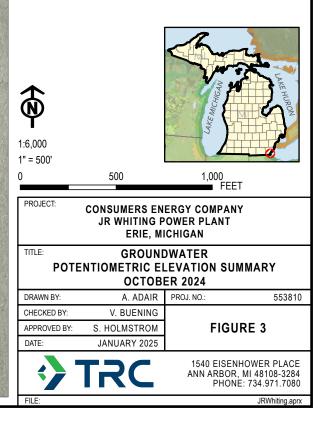
MONITORING WELL (STATIC WATER LEVEL ONLY)

◆ CCR UNIT MONITORING WELL

NOTES:

- BASE MAP IMAGERY FROM GOOGLE EARTH PRO AND PARTNERS, (4/17/2024).
 STATIC WATER ONLY WELL LOCATIONS SURVEYED BY SHERIDAN SURVEYING CO. ON 11/19/2015.
 PONDS 1 AND 2 WELL LOCATIONS SURVEYED BY ROWE PROFESSIONAL SERVICES CO. ON 11/27/2019.

MONITORING WELL (STATIC WATER LEVEL ONLY)


-CCR UNIT MONITORING WELL

LABEL FORMAT

GROUNDWATER ELEVATION FT (MEASUREMENT DATE)

NOTES:

- 1: BASE MAP IMAGERY FROM GOOGLE EARTH PRO AND PARTNERS, (4/17/2024).
- 2. WELL LOCATIONS SURVEYED BY SHERIDAN SURVEYING CO. ON 11/19/2015.
- PONDS 1 AND 2 WELL LOCATIONS SURVEYED BY ROWE PROFESSIONAL SERVICES CO. ON 11/27/2019.
- MONITORING WELL TOP OF CASING SURVEYED BY ROWE PROFESSIONAL SERVICES CO. ON 7/14/2020. VERTICAL DATUM IS NAVD88.

Appendix A Data Quality Reviews

Pond 1 & 2

Laboratory Data Quality Review Groundwater Sampling Event October 2024 Consumers Energy JR Whiting Pond 1 & 2

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the October 2024 groundwater monitoring sampling event. Samples were analyzed for anions, total metals, and total dissolved solids by CE Laboratory Services, located in Jackson, Michigan. The laboratory analytical results were reported in laboratory project number 24-0832.

During the October 2024 sampling event, a groundwater sample was collected from each of the following wells:

- JRW-MW-15001
 JRW-MW-15002
 JRW-MW-15003
- JRW-MW-15004 JRW-MW-15005 JRW-MW-15006

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals (Boron, Calcium, Iron)	SW-846 6020B

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for equipment blanks and field blanks. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and laboratory control samples were not provided for review by the laboratory. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III constituents as well as iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.
- When the data are evaluated through a detection monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- One equipment blank (EB-01) and one field blank (FB-01) were collected. Target analytes were not detected in these blank samples.
- MS and MSD analyses were performed on sample JRW-MW-15006 for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences (RPDs) were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since all MS/MSD recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- A laboratory duplicate analysis was not performed on a sample from this data set.
- Samples DUP-01/JRW-MW-15002 were submitted as the field duplicate pair with this data set; all criteria were met with the following exception:
 - The RPD for iron (136.3%) was > 30. Therefore, the positive results for iron in all groundwater samples in this data set should be considered potentially uncertain (i.e., estimated), as summarized in the attached table, Attachment A.
- The nondetect RL for TDS (10 mg/L) in samples EB-01 and FB-01 was above the RL specified in the Sample and Analysis Plan (SAP) (1.0 mg/L). There is no adverse impact on data usability since TDS was detected >10x the blank RLs in the associated groundwater samples.
- The nondetect RL for sulfate (1,000 µg/L) in samples EB-01 and FB-01 was below the RL specified in the SAP (2,000 µg/L). There is no adverse impact on data usability since reported RL is lower than SAP RL.

Attachment A Summary of Data Non-Conformances for Groundwater Analytical Data JR Whiting Pond 1 2 Erie, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
JRW-MW-15001	10/3/2024		
JRW-MW-15002	10/3/2024		
JRW-MW-15003	10/3/2024		
JRW-MW-15004	10/3/2024	Iron	Field duplicate variability (relative percent difference above criteria); potential uncertainty exists for the listed results.
JRW-MW-15005	10/3/2024		
JRW-MW-15006	10/3/2024		
DUP-01	10/3/2024		

Pond 6

Laboratory Data Quality Review Groundwater Sampling Event October 2024 Consumers Energy JR Whiting Pond 6

Groundwater samples were collected by Consumers Energy (CE) Laboratory Services for the October 2024 groundwater monitoring sampling event. Samples were analyzed for anions, total metals, and total dissolved solids by CE Laboratory Services, located in Jackson, Michigan. The laboratory analytical results were reported in laboratory project number 24-0833.

During the October 2024 sampling event, a groundwater sample was collected from each of the following wells:

- JRW-MW-16001
 JRW-MW-16002
 JRW-MW-16003
- JRW-MW-16004 JRW-MW-16005 JRW-MW-16006

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals (Boron, Calcium, Iron)	SW-846 6020B

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for equipment blanks and field blanks. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and

- Overall usability of the data.
- It should be noted that results for method blanks and laboratory control samples were not provided for review by the laboratory. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III constituents as well as iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.
- When the data are evaluated through a detection monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- One equipment blank (EB-02) and one field blank (FB-02) were collected. Target analytes were not detected in these blank samples.
- MS/MSD analyses were performed on sample JRW-MW-16003 for total metals and anions. The recoveries were within the acceptance limits. Relative percent differences were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since MS/MSD recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- A laboratory duplicate analysis was not performed on a sample from this data set.
- Samples DUP-02/JRW-MW-16003 were submitted as the field duplicate pair with this data set; all criteria were met with the following exception.
 - The RPD for iron (31%) was > 30. Therefore, the positive results for iron in all groundwater samples in this data set should be considered potentially uncertain (i.e., estimated), as summarized in the attached table, Attachment A.
- The nondetect RL for TDS (10 mg/L) in samples EB-02 and FB-02 was above the RL specified in the Sample and Analysis Plan (SAP) (1 mg/L). There is no adverse impact on data usability since TDS was detected >10x the blank RLs in the associated groundwater samples.
- The nondetect RL for sulfate (1,000 µg/L) in samples EB-02 and FB-02 was below the RL specified in the SAP (2,000 µg/L). There is no adverse impact on data usability since reported RL is lower than SAP RL.

Attachment A Summary of Data Non-Conformances for Groundwater Analytical Data JR Whiting Pond 6 Erie, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
JRW-MW-16001	10/3/2024		
JRW-MW-16002	10/3/2024		
JRW-MW-16003	10/3/2024		
JRW-MW-16004	10/3/2024	Iron	Field duplicate variability (relative percent difference above criteria); potential uncertainty exists for the listed results.
JRW-MW-16005	10/3/2024		
JRW-MW-16006	10/3/2024		
DUP-02	10/3/2024		

Appendix B Laboratory Reports

Pond 1 & 2

To: HDRegister, P22-521

From: EBlaj, T-258

Date: October 20, 2024

Subject: RCRA GROUNDWATER MONITORING – JR WHITING POND 1 & 2 – 2024 Q4

CC: Sarah Holmstrom, Project Manager TRC Environmental Corporation 1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 24-0832

phone 517-788-1251 *fax* 517-788-2533

135 W. Trail St.

Jackson, MI 49201

CE Laboratory Services conducted groundwater monitoring at JR Whiting, Pond 1 & 2 on 10/03/2024, for the 2nd Semiannual monitoring requirement, and as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 10/03/2024.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

Qualifier	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
Κ	Reporting limit raised due to matrix interference
Μ	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:JR Whiting ComplexWork Order ID:JRW RCRA GW Monitoring - Pond 1&2 - October 2024Date Received:10/3/2024Chemistry Project:24-0832

Sample #	Field Sample ID	Matrix	Sample Date	Site
24-0832-01	JRW-MW-15001	Groundwater	10/03/2024 14:31	JRW RCRA GW Monitoring - Pond 1&2
24-0832-02	JRW-MW-15002	Groundwater	10/03/2024 09:50	JRW RCRA GW Monitoring - Pond 1&2
24-0832-03	JRW-MW-15003	Groundwater	10/03/2024 10:30	JRW RCRA GW Monitoring - Pond 1&2
24-0832-04	JRW-MW-15004	Groundwater	10/03/2024 11:13	JRW RCRA GW Monitoring - Pond 1&2
24-0832-05	JRW-MW-15005	Groundwater	10/03/2024 11:55	JRW RCRA GW Monitoring - Pond 1&2
24-0832-06	JRW-MW-15006	Groundwater	10/03/2024 13:19	JRW RCRA GW Monitoring - Pond 1&2
24-0832-07	DUP-01	Groundwater	10/03/2024 00:00	JRW RCRA GW Monitoring - Pond 1&2
24-0832-08	EB-01	Water	10/03/2024 14:41	JRW RCRA GW Monitoring - Pond 1&2
24-0832-09	FB-01	Water	10/03/2024 14:38	JRW RCRA GW Monitoring - Pond 1&2
24-0832-10	JRW-MW-15006 Field MS	Groundwater	10/03/2024 13:19	JRW RCRA GW Monitoring - Pond 1&2
24-0832-11	JRW-MW-15006 Fleld MSD	Groundwater	10/03/2024 13:19	JRW RCRA GW Monitoring - Pond 1&2

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15001	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-01	Collect Time:	02:31 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals					Aliquot: 24-0832-01-C01-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	184		ug/L	20	10/15/2024	AB24-1016-01
Calcium	138000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	852		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analy	Aliquot: 24-0832-01-C02-A01		Analyst: KDR			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	48900		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1130		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	411000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C					Aliquot: 24-0832-01-C03-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	982		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15002	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-02	Collect Time:	09:50 AM
Matrix:	Groundwater		
		Collect Time:	09:50 AM

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0832-02-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	198		ug/L	20	10/15/2024	AB24-1016-01
Calcium	135000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	776		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot: 24-0832-02-C02-A01		Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	46400		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1250		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	421000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C	Total Dissolved Solids by SM 2540C				24-0832-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	952		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15003	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-03	Collect Time:	10:30 AM
Matrix:	Groundwater		
•		Collect Time:	10:30 AM

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals			Aliquot: 24-0832-03-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	201		ug/L	20	10/15/2024	AB24-1016-01
Calcium	113000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	122		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0832-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	45000		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1270		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	356000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C	Total Dissolved Solids by SM 2540C					Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	748		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15004	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-04	Collect Time:	11:13 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals			Aliquot: 24-0832-04-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	214		ug/L	20	10/15/2024	AB24-1016-01
Calcium	113000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	112		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0832-04-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	48300		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1210		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	340000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C	Total Dissolved Solids by SM 2540C				24-0832-04-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	776		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15005	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-05	Collect Time:	11:55 AM
Matrix:	Groundwater		
Field Sample ID: Lab Sample ID:	JRW-MW-15005 24-0832-05	Collect Date:	10/03/202

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0832-05-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	190		ug/L	20	10/15/2024	AB24-1016-01
Calcium	109000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	51		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analy	Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				24-0832-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	33800		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1150		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	309000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C	Total Dissolved Solids by SM 2540C				24-0832-05-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	696		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15006	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-06	Collect Time:	01:19 PM
Matrix:	Groundwater		
1		Collect Time:	01:19 PM

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0832-06-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	185		ug/L	20	10/15/2024	AB24-1016-01
Calcium	120000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	1020		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot: 24-0832-06-C02-A01		Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	45400		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1180		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	355000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C					24-0832-06-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	816		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	DUP-01	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-07	Collect Time:	12:00 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0832-07-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	195		ug/L	20	10/15/2024	AB24-1016-01
Calcium	118000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	147		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous				Aliquot:	24-0832-07-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	45700		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1280		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	359000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C					24-0832-07-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	716		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	EB-01	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-08	Collect Time:	02:41 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appe	Boron ND ug/L					
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	ND		ug/L	20	10/15/2024	AB24-1016-01
Calcium	ND		ug/L	1000	10/15/2024	AB24-1016-01
Iron	ND		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analy	604, Aqu	eous	Aliquot: 2	24-0832-08-C02-A01	Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	ND		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	ND		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	ND		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C				Aliquot: 2	24-0832-08-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	ND		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	FB-01	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-09	Collect Time:	02:38 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appe	ndix III and Fe	e Total M	etals	Aliquot:	24-0832-09-C01-A01	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Boron	ND		ug/L	20	10/15/2024	AB24-1016-01	
Calcium	ND		ug/L	1000	10/15/2024	AB24-1016-01	
Iron	ND		ug/L	20	10/15/2024	AB24-1016-01	
Anions by EPA 300.0 CCR Rule Analy	04, Aqu	eous	Aliquot:	24-0832-09-C02-A01	32-09-C02-A01 Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Chloride	ND		ug/L	1000	10/09/2024	AB24-1009-02	
Fluoride	ND		ug/L	1000	10/09/2024	AB24-1009-02	
Sulfate	ND		ug/L	1000	10/09/2024	AB24-1009-02	
Total Dissolved Solids by SM 2540C				Aliquot:	24-0832-09-C03-A01	Analyst: LMO	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Total Dissolved Solids	ND		mg/L	10	10/08/2024	AB24-1008-04	

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15006 Field MS	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-10	Collect Time:	01:19 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR I	Rule Appendix III and F	e Total M	etals	Aliquot:	24-0832-10-C01-A01	Analyst: EB		
Parameter(s)	Result	e Appendix III and Fe Total MetalsResultFlagUnits120%105%112%	Units	RL	Analysis Date	Tracking #		
Boron	120		%	20	10/15/2024	AB24-1016-01		
Calcium	105		%	1000	10/15/2024	AB24-1016-01		
Iron	112		%	20	10/15/2024	AB24-1016-01		

Anions by EPA 300.0 CCR	Rule Analyte List, Cl, F,	SO4, Aqu	eous	Aliquot:	Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	119		%	1000	10/09/2024	AB24-1009-02
Fluoride	101		%	1000	10/09/2024	AB24-1009-02
Sulfate	106		%	1000	10/09/2024	AB24-1009-02

Sample Site:	JRW RCRA GW Monitoring - Pond 1&2	Laboratory Project:	24-0832
Field Sample ID:	JRW-MW-15006 Fleid MSD	Collect Date:	10/03/2024
Lab Sample ID:	24-0832-11	Collect Time:	01:19 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CC	R Rule Appendix III and F	ppendix III and Fe Total Metals Result Flag Un 101 %	etals	Aliquot:	Analyst: EB		
Parameter(s)	Result	Result Flag		RL	Analysis Date	Tracking #	
Boron	101		%	20	10/15/2024	AB24-1016-01	
Calcium	106		%	1000	10/15/2024	AB24-1016-01	
Iron	105		%	20	10/15/2024	AB24-1016-01	

Anions by EPA 300.0 CCF	R Rule Analyte List, CI, F, S	SO4, Aqueous	Aliquot:	24-0832-11-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #
Chloride	120	%	1000	10/09/2024	AB24-1009-02
Fluoride	102	%	1000	10/09/2024	AB24-1009-02
Sulfate	106	%	1000	10/09/2024	AB24-1009-02

Data Qualifiers

Exception Summary

No exceptions occurred.

Chemistry Department

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 5 ATTACHMENT A

1

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN – SHIPMENT INSPECTION FORM

Project Number: <u>24.08 3</u> 2	Inspectio	n Date: <u>10 · 4 · 24</u>	Inspection By	r: <u>cie</u>
Sample Origin/Project Name: <u>JR</u>	Whiting Pa	ond 12		
Shipment Delivered By: Enter the	type of shipment carri	er.		
Inter-Company Mail	FedEx	UPS	USPS	
Tracking Number:		Other/Carry In (whom)	KDR - 0	onsumers
Shipping Containers: Enter the typ	e and number of ship	ping containers received.		
Cooler (1) Cardb	oard Box	Custom Case	Envelope/	Mailer
Loose/Unpackaged Contair	iers	Other		
Condition of Shipment: Enter the	as-received condition	of the shipment container.		
Damaged Shipment Observ Other		Dented		1king
Shipment Security: Enter if any of	the shipping containe	ers were opened before receip	•	
Shipping Containers Receiv	ved: Opened	Sealed	N/A	
Enclosed Documents: Enter the ty	be of documents enclo	sed with the shipment.		
CoC 🗸 Work Re	quest	Air Data Sheet	Other	
Temperature of Containers: Meas				
•	-	°C Samples Received	on Ice: Ver	/ No
	•		011100. 103_	110
M&TE # and Expiration <u>L</u>	5001100 / 6.	21.15		
Number and Type of Containers:	Enter the type and to	tal number of sample containe	ers received.	
Container Type Wa		Other	<u>Broken</u>	<u>Leaking</u>
VOA (40mL or 60mL)		<u></u>	·	
Quart/Liter (g / p)				
9-oz (amber glass jar)				
2-oz (amber glass) $\underline{}$	2			·
			-	
24 mL vial (glass)				······
	•			
Other				
All sample pH meeting criteria? Y	VesNoN/A	_ pH paper lot # <u>2055 7</u> FSP /	22 Exp 13- 640-6	. Date <u>2 · 15 · 25</u> 08
Indicate if an Exception Report (I	Page 2 of 2) is needed	: Yes No		
	<u>24-0832 Page</u>	17 of 18		

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

Page 1 of 1

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

SAMPLING SITE /	CUSTOMER:			PROJECT NUMBER:	PROJECT NUMBER: SAP CC or WO#:			A	NAL	YSIS	REG	QUES	TED		OA PEOLUPEMENT.						
JRW Pond 1&2 C	GW Monitoring – C	october 20	24	24-0832	24-0832 REQUESTER: JR Register				(Attach List if More Space is Needed)							QA	QA REQUIREMENT:				
SAMPLING TEAM	KDR,U	NO		TURNAROUND TIME REQUIRED:	STANDARD 0	THER_					_									□ NPDES ⊠ TNI	
SEND REPORT T	D: JR Register			email:	phone:															SO 17025	
COPY TO:	TRC			MATRIX CODES: GW = Groundwater OX = O WW = Wastewater SL = SI	ther		T	ONT												10 CFR 50 APP. B	
	SAMPLE COLL	SAMPLE COLLECTION		W = Water / Aqueous Liquid A = Ain S = Soil / General Solid WP = V	r	TOTAL #	-	PRES				l Metals	suo							NTERNAL INFO	
LAB SAMPLE ID	DATE	TIME	MATRIX	FIELD SAMPLE ID / L	OCATION	TOT	None	HNO ₃	NaOH	HCI	MeOF	Total	Anions	TDS						REMARKS	
24-0832-01	10.03.24	1431	GW	JRW-MW-15001		3	2	1				x	x	x							
-02	10.03.24	0950	GW	JRW-MW-15002		3	2	1				x	x	x							
-03	10.03.24	1030	GW	JRW-MW-15003		3	2	1				x	x	x							
-04	10.03.24	1113	GW	JRW-MW-15004		3	2	1				x	x	x							
-05	10.03.24	1155	GW	JRW-MW-15005		3	2	1				x	x	x							
-06	10.03.24	1319	GW	JRW-MW-15006		3	2	1				x	x	x							
-07	10.03.24		GW	DUP-01		3	2	1				x	x	x							
-08	10.03.24	1441	w	EB-01		3	2	1				x	x	x				_			
-09	10.03.24	1438	W	FB-01		3	2	1				x	x	x							
-10	10.03.24	1319	GW	JRW-MW-15006 MS		2	1	1				x	x				_				
-11	10.03.24	1319	GW	JRW-MW-15006 MSD		2	1	1				x	x					_			
relinquished b	Y: Dulat	1	DATE/	TIME: D·3·24/17 <i>3</i> 4	RECEIVED BY:) MMI							5 0 T T T T T	
RELINQUISHED B	Y:	1	DATE/	TIME:	RECEIVED BY:	of 18						Re Te	ceiveo mpera	d on I ture:	ce? ⊡ 4.2-	Yes 5.9	□ N 2°C	o M& Cal	TE #: <u>C</u>	5027723	

Pond 6

To: HDRegister, P22-521

From: EBlaj, T-258

Date: October 20, 2024

Subject: RCRA GROUNDWATER MONITORING – JR WHITING POND 6 – 2024 Q4

CC: Sarah Holmstrom, Project Manager TRC Environmental Corporation 1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 24-0833

phone 517-788-1251 *fax* 517-788-2533

135 W. Trail St.

Jackson, MI 49201

CE Laboratory Services conducted groundwater monitoring at JR Whiting, Pond 6 on 10/03/2024, for the 2nd Semiannual monitoring requirement, and as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis in the Chemistry department of Laboratory Services on 10/03/2024.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

Qualifier	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
Κ	Reporting limit raised due to matrix interference
М	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:JR Whiting ComplexWork Order ID:JRW RCRA GW Monitoring - Pond 6 - October 2024Date Received:10/3/2024Chemistry Project:24-0833

Sample #	Field Sample ID	Matrix	Sample Date	Site
24-0833-01	JRW-MW-16001	Groundwater	10/03/2024 12:01	JRW RCRA GW Monitoring - Pond 6
24-0833-02	JRW-MW-16002	Groundwater	10/03/2024 11:21	JRW RCRA GW Monitoring - Pond 6
24-0833-03	JRW-MW-16003	Groundwater	10/03/2024 15:31	JRW RCRA GW Monitoring - Pond 6
24-0833-04	JRW-MW-16004	Groundwater	10/03/2024 14:41	JRW RCRA GW Monitoring - Pond 6
24-0833-05	JRW-MW-16005	Groundwater	10/03/2024 12:41	JRW RCRA GW Monitoring - Pond 6
24-0833-06	JRW-MW-16006	Groundwater	10/03/2024 14:06	JRW RCRA GW Monitoring - Pond 6
24-0833-07	DUP-02	Groundwater	10/03/2024 00:00	JRW RCRA GW Monitoring - Pond 6
24-0833-08	EB-02	Water	10/03/2024 15:48	JRW RCRA GW Monitoring - Pond 6
24-0833-09	FB-02	Water	10/03/2024 15:57	JRW RCRA GW Monitoring - Pond 6
24-0833-10	JRW-MW-16003 Field MS	Groundwater	10/03/2024 15:31	JRW RCRA GW Monitoring - Pond 6
24-0833-11	JRW-MW-16003 Fleld MSD	Groundwater	10/03/2024 15:31	JRW RCRA GW Monitoring - Pond 6

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	JRW-MW-16001	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-01	Collect Time:	12:01 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 2	24-0833-01-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	159		ug/L	20	10/15/2024	AB24-1016-01
Calcium	82300		ug/L	1000	10/15/2024	AB24-1016-01
Iron	135		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyt	e List, Cl, F, S	04, Aqu	eous	Aliquot: 2	24-0833-01-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	19300		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1260		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	256000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C				Aliquot: 2	24-0833-01-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	614		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	JRW-MW-16002	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-02	Collect Time:	11:21 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals			Aliquot:	24-0833-02-C01-A01	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	161		ug/L	20	10/15/2024	AB24-1016-01
Calcium	133000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	306		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous			eous	Aliquot:	24-0833-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	21600		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	ND		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	416000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 254	0C			Aliquot:	24-0833-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	784		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	JRW-MW-16003	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-03	Collect Time:	03:31 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot:	24-0833-03-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	208		ug/L	20	10/15/2024	AB24-1016-01
Calcium	115000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	429		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyt	e List, Cl, F, S	O4, Aqu	eous	Aliquot:	24-0833-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	26900		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1140		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	395000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C				Aliquot:	24-0833-03-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	772		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	JRW-MW-16004	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-04	Collect Time:	02:41 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 2	24-0833-04-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	188		ug/L	20	10/15/2024	AB24-1016-01
Calcium	141000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	320		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analyt	te List, CI, F, S	04, Aqu	eous	Aliquot: 2	24-0833-04-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	38800		ug/L	1000	10/09/2024	AB24-1009-02
Fluoride	1180		ug/L	1000	10/09/2024	AB24-1009-02
Sulfate	481000		ug/L	1000	10/09/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C				Aliquot: 2	24-0833-04-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	938		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	JRW-MW-16005	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-05	Collect Time:	12:41 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0833-05-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	202		ug/L	20	10/15/2024	AB24-1016-01
Calcium	97200		ug/L	1000	10/15/2024	AB24-1016-01
Iron	46		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Anal	Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous					Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	24800		ug/L	1000	10/10/2024	AB24-1009-02
Fluoride	1310		ug/L	1000	10/10/2024	AB24-1009-02
Sulfate	297000		ug/L	1000	10/10/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C	Total Dissolved Solids by SM 2540C					Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	656		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	JRW-MW-16006	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-06	Collect Time:	02:06 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals					Aliquot: 24-0833-06-C01-A01			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #		
Boron	172		ug/L	20	10/15/2024	AB24-1016-01		
Calcium	96900		ug/L	1000	10/15/2024	AB24-1016-01		
Iron	328		ug/L	20	10/15/2024	AB24-1016-01		
Anions by EPA 300.0 CCR Rule Analyt	e List, Cl, F, S	04, Aqu	eous	Aliquot: 24-0833-06-C02-A01		Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #		
Chloride	24200		ug/L	1000	10/10/2024	AB24-1009-02		
Fluoride	1270		ug/L	1000	10/10/2024	AB24-1009-02		
Sulfate	304000		ug/L	1000	10/10/2024	AB24-1009-02		
Total Dissolved Solids by SM 2540C				Aliquot: 2	24-0833-06-C03-A01	Analyst: LMO		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #		
Total Dissolved Solids	692		mg/L	10	10/08/2024	AB24-1008-04		

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	DUP-02	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-07	Collect Time:	12:00 AM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals				Aliquot: 24-0833-07-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	161		ug/L	20	10/15/2024	AB24-1016-01
Calcium	139000		ug/L	1000	10/15/2024	AB24-1016-01
Iron	314		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule Analy	/te List, Cl, F,	SO4, Aqu	eous	Aliquot:	24-0833-07-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	21700		ug/L	1000	10/10/2024	AB24-1009-02
Fluoride	ND		ug/L	1000	10/10/2024	AB24-1009-02
Sulfate	409000		ug/L	1000	10/10/2024	AB24-1009-02
Total Dissolved Solids by SM 2540C Aliquot: 24-0833-07-C03-A01 Analyst: L						Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	758		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	EB-02	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-08	Collect Time:	03:48 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals			Aliquot: 24-0833-08-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	ND		ug/L	20	10/15/2024	AB24-1016-01
Calcium	ND		ug/L	1000	10/15/2024	AB24-1016-01
Iron	ND		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule	Anions by EPA 300.0 CCR Rule Analyte List, Cl, F, SO4, Aqueous				24-0833-08-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	ND		ug/L	1000	10/10/2024	AB24-1009-02
Fluoride	ND		ug/L	1000	10/10/2024	AB24-1009-02
Sulfate	ND		ug/L	1000	10/10/2024	AB24-1009-02
Total Dissolved Solids by SM 2	540C			Aliquot:	24-0833-08-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	ND		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	FB-02	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-09	Collect Time:	03:57 PM
Matrix:	Water		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals			Aliquot: 24-0833-09-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	ND		ug/L	20	10/15/2024	AB24-1016-01
Calcium	ND		ug/L	1000	10/15/2024	AB24-1016-01
Iron	ND		ug/L	20	10/15/2024	AB24-1016-01
Anions by EPA 300.0 CCR Rule	Analyte List, Cl, F,	SO4, Aqu	eous	Aliquot:	24-0833-09-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	ND		ug/L	1000	10/10/2024	AB24-1009-02
Fluoride	ND		ug/L	1000	10/10/2024	AB24-1009-02
Sulfate	ND		ug/L	1000	10/10/2024	AB24-1009-02
Total Dissolved Solids by SM 2	540C			Aliquot:	24-0833-09-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	ND		mg/L	10	10/08/2024	AB24-1008-04

Sample Site:	JRW RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
Field Sample ID:	JRW-MW-16003 Field MS	Collect Date:	10/03/2024
Lab Sample ID:	24-0833-10	Collect Time:	03:31 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III and Fe Total Metals			Aliquot: 24-0833-10-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	113		%	20	10/15/2024	AB24-1016-01
Calcium	107		%	1000	10/15/2024	AB24-1016-01
Iron	95		%	20	10/15/2024	AB24-1016-01

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous			Aliquot: 24-0833-10-C02-A01		Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	112		%	1000	10/10/2024	AB24-1009-02
Fluoride	100		%	1000	10/10/2024	AB24-1009-02
Sulfate	111		%	1000	10/10/2024	AB24-1009-02

N RCRA GW Monitoring - Pond 6	Laboratory Project:	24-0833
V-MW-16003 Fleid MSD	Collect Date:	10/03/2024
0833-11	Collect Time:	03:31 PM
undwater		
V	7-MW-16003 Fleid MSD 833-11	A-MW-16003 Field MSD Collect Date: 833-11 Collect Time:

Metals by EPA 6020B: CCR R	Rule Appendix III and F	e Total M	etals	Aliquot:	24-0833-11-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Boron	115		%	20	10/15/2024	AB24-1016-01
Calcium	106		%	1000	10/15/2024	AB24-1016-01
Iron	92		%	20	10/15/2024	AB24-1016-01

Anions by EPA 300.0 CCF	R Rule Analyte List, Cl, F, S	SO4, Aqueous	Aliquot:	24-0833-11-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #
Chloride	112	%	1000	10/10/2024	AB24-1009-02
Fluoride	101	%	1000	10/10/2024	AB24-1009-02
Sulfate	109	%	1000	10/10/2024	AB24-1009-02

Data Qualifiers

Exception Summary

No exceptions occurred.

Chemistry Department

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 5 ATTACHMENT A

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN – SHIPMENT INSPECTION FORM

Project Number: 24.08		-			
Sample Origin/Project Name:	JR V	VhitiNE	i Pond lo		
Shipment Delivered By: Enter	• the type of	shipment carı	ier.		
Inter-Company Mail					
			Other/Carry In Whon	1) <u>CIE - CONS</u>	sumers
Shipping Containers: Enter th		-	pping containers received.		
$\frac{(1)}{Cooler}$	ardboard B	ox	Custom Case	Envelope/N	failer
Loose/Unpackaged Co	ntainers	•	Other	· · · · · · · · · · · · · · · · · · ·	
Condition of Shipment: Enter	the as-recei	ived condition	of the shipment container.		
Damaged Shipment Ol Other			Dented		ing
hipment Security: Enter if an	ıy of the shi	pping contain	ers were opened before reco	eipt.	
Shipping Containers R	eceived: O	pened	Sealed	N/A	
Inclosed Documents: Enter th	e type of do	ocuments encl	osed with the shipment.		
CoC Wor	·k Request		Air Data Sheet	Other	
emperature of Containers: N					
•		•	°C Samples Receiv		
				/eu on ice. Tes	
M&TE # and Expiration	on <u>01940</u>	6 15	.23.29		
lumber and Type of Contain	ers: Enter (the type and to	otal number of sample conta	iners received.	
Container Type	<u>Water</u>	Soil	<u>Other</u>	Broken	Leaking
VOA (40mL or 60mL)		, 			
Quart/Liter (g/p)					
9-oz (amber glass jar)					
2-oz (amber glass)					,
125 mL (plastic)	12				<u></u> ,
24 mL vial (glass)					·····
250 mL (plastic)	9				
Other					
All sample pH meeting criteri Indicate if an Exception Repo			_ pH paper lot # 209 F9 3 d: Yes No	<u>52A</u> Exp. 1 -440-508	Date <u>2 • 15 • 2 1</u>
		<u>24-0833 Pag</u>	<u>e 17 of 18</u>		

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

Page _ l of _ l

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

SAMPLING SITE / CU	ISTOMER:	1.000		PROJECT NUMBER:	SAP CC or	WO#:									LYSI				QA REQUIREMENT:
JRW Pond 6 GW M	onitoring – Octo	ber 2024		24-0833	REQUESTE	R: JR R	Regi	ster					(Atta	ach L	ist if N	Aore S	Space i	s Needed)	
SAMPLING TEAM:				TURNAROUND TIME REQUIRED:	Same and and	1.5													□ NPDES
С	le			□ 24 HR □ 48 HR □ 3 DAYS ▷	STANDARD C	DTHER_				_	-								🖾 TNI
SEND REPORT TO:	JR Register			email:			_							□ ISO 17025					
COPY TO:	TRC				Other Sludge		1	ONT	<u> </u>										□ 10 CFR 50 APP. B
				W = Water / Aqueous Liquid A = A		#	-	PRES	SER	VA	TIVE	Total Metals							□ INTERNAL INFO
LAB	SAMPLE COLL	ECTION	MATRIX	O = Oil $WT =$	= General Waste	TOTAL	lo3		003 304		MaOH HCl MeOH		Anions	S	s				□ OTHER
SAMPLE ID	DATE	TIME	MAJ	FIELD SAMPLE ID / 1	LOCATION	TO	Noi	NH	H ₂ S	Na(Me	D L	Ar	TDS	5				REMARKS
24-0833-01	10.3.24	1201	GW	JRW-MW-16001		3	2	1				x	x	x					
-02	1	1121	GW	JRW-MW-16002		3	2	1				x	x	x					
-03		1531	GW	JRW-MW-16003		3	2	1				x	x	x					
-04		1441	GW	JRW-MW-16004		3	2	1				x	x	x					
-05		1241	GW	JRW-MW-16005		3	2	1				x	x	x					
-06		1406	GW	JRW-MW-16006		3	2	1				x	x	x					
-07	1.1	-	GW	DUP-02		3	2	1				x	x	x					
-08		1545	w	EB-02		3	2	1				x	x	x					
-09		1557	w	FB-02		3	2	1				x	x	x					1
-10		1531	GW	JRW-MW-16003 MS		2	1	1				x	x						
-11	T	1531	GW	JRW-MW-16003 MSD		2	1	1				x	x						
RELINQUISHED BY:			DATE/		RECEIVED BY:							C	OMM	IENT	'S:				
LAGUPY	that			1800 TIME:	RECEIVED BY:		-		-	-	_	R	eceive	ed on	Ice?	Ye	s 🗆 N	o M&	TE #: 616402
KELINQUISHED BY:			DATE	LIVAL.	U							Т	emper	ature	4.2	-51	°C	Cal.	TE #: _ 616402 Due Date: _ 5·23·25

Appendix C Field Notes

JR Whiting 24-0832, KOR, LMO	6/200			
24-0832,	6000			
UDP LAND	00055		Reviewed b	y: Y-
FUNI LMU			Review Date	e: 10-11-24
a shirt a shirt in				
	e			
Solinist 1	01 P7	S/N:	15030623	>
Time	DTW Trial 1 (ft)	DTW Trial 2 (ft)	DTB (ft)	Remarks
0824	5.79		81.96	Good, Locked
0808	14.56		92.25	Good, Locked
0811	11.63		90.29	Goodilocked
0814	13.72		96.46	Good, locked
0817	12. le le		93.65	Good, locked
0822	4.94		82.97	Good, locked
1508	5.01			
0856	1(e.72		84.00	marked TOC
0900	13.09		94.37	marked TOC
0903	13.39		86.04	marked TOC
0906	13.75		88.84	marked TOC
0852	16.52		91.41	marked TOC
0845	15.42		91.76	marked TOC
6744	le. le 9		80.95	marked TOC
0748	7.23		76.31	marked TOC
0 152	7.00		81.93	marked TOC
	16.03.24 Electronic Tape Solunist 10 Time 0824 0808 0811 0814 0817 0822 1508 0850 0900 0906 0852 0852 0852 0852 0845 0744 0748	$\begin{array}{c c} 16.03.24 \\ \hline Electronic Tape \\ \hline Solumist 101 PT \\ \hline Time \\ DTW Trial 1 \\ (ft) \\ 0824 \\ 5.79 \\ 0808 \\ 14.56 \\ 0811 \\ 11.63 \\ 0814 \\ 13.72 \\ 0817 \\ 12.66 \\ 0822 \\ 4.94 \\ 1508 \\ 5.01 \\ 0856 \\ 16.72 \\ 0900 \\ 13.09 \\ 0906 \\ 13.75 \\ 0852 \\ 16.52 \\ 0852 \\ 16.52 \\ 0845 \\ 15.42 \\ 0748 \\ 7.23 \\ \end{array}$	IG.03.24Electronic TapeSolumist IOI P1S/N:TimeDTW Trial 1 (ft)DTW Trial 2 (ft)0824 5.79 080804.56081111.63080814.560811081413.720817081712.666082208224.9415085.01085616.72090013.09090613.75085216.52084515.4207446.6907487.23	IG-03-14Electronic TapeSolumist 101 P1S/N: LS030(e22)TimeDTW Trial 1 (ft)DTW Trial 2 (ft)DTB (ft)0824 5.79 81.96 080814.56 92.25 081111.63 90.29 081413.72 $9(e.46)$ 081712.66 93.655 08224.94 82.97 1508 5.01 0900 085616.712 84.00 090013.09 94.37 090313.39 86.04 090613.75 88.84 085216.52 91.41 084515.42 91.76 07487.23 76.31

÷

NOTES: TOC reference point DTW = Depth to Water DTB = Depth to Bottom

Consumers E	nergy			Equ	uipment De	tails		Model &	S/N	
	ount on Us			Mon	itor Brand		YSI ProD	SS S/N 19	F104713	
	EXCELLENCE			Sone	de Brand	-	262909-1 EXO1 599080 YSI ProDSS S/N 15G10371-			
Sonde ID	15H			Flow	Call					
Start Date	10.3.24			Flow	Cell		YSI ProDSS S/N 15H101425 262909-1			
Start Date		0000	_	DO	Probe 96	.7	YSI ProDS	YSI ProDSS S/N 15G1037		
Project #	24-0832	2,-0833	2	Turb	idity Probe		YSI ProDS			
Site	JRW			pH V	pH With ORP			SS S/N 22	D102306	
Reviewed By & Date:	Y.	60-11-24			ductivity & perature Pr	obe	YSI ProD	SS S/N 220	G103712	
	0				6					
				oject tion e	Field ks eted	ield	Field ks eted	Filed ks eted	oject tion e	

pH Standard (±0.1)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1 st Daily Fiel Checks Completed	2 nd Daily Fiel Checks Completed	3rd Daily Fiel Checks Completed	4 th Daily File Checks Completed	End Project Calibration Value
4.0	GFS # 1634	24003185	5.31.25	4.00					4.00
7.0	GFS # 1639	24003597	7.26.25	7.00					7.04
10.0	GFS # 1645	24003156	5.28.25	16.01					9.95
		1	nitials & Date:	KDR 10.2.24					KDR 10.4.24

(or Are the calibration values within ±0.10 of the standard? N (if no, recalibration is required) .

ORP Standard (±10 mV)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1 st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
+228.0 (mV)	GFS# 5525	24009576	11.25.24	226.5					225.5
1	1	1	nitials & Date:	KOR 6.2.24					KOR 10.4.24

Are the calibration values within ±10% of the standard? •

N (if no, recalibration is required) (or

DO	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	96.3					97.0
		1	nitials & Date:	10.2.24					KOR 10.4.24

Sonde ID Start Date	15H 10.3.24			Project #: 24-08321-0833							
Reviewed By & Date:	Y.	10-11-24	Site:	JRW)						
Specific Conductanc (uS/cm)	e Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1 st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value		
1414 (1399-1427)	GFS#	24012460	6.3.25	1412					1410		
		In	itials & Date:	10.2.24					KDR 10.4.24		
	ame standard u calibration valu			Y) or N) or N	(if no, docu (if no, reca	the second second second	-	d)		

Turbidity (NTUs)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1 st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
0	DI Water	-	-	0.01					0.02
40.0 (±4.0 NTUs)	Hach 2746356	A3093	4.25	39.87					42.76
800.0 (±80.0 NTUs)	Hach 2660553	A3310	11.25	812.95					827.19
		In	itials & Date:	KPR 10.2.24					KDR 10.4.24

Additional Information for calibration standards

Standard	Source	Source Lot #	Source Exp. Date	Standard	Source	Source Lot #	Source Exp. Date
pH 4.0				pH 9.0			
pH 7.0				ORP			
pH 10.0							
Sp. Conductivity							
10.0 Turbidity							
40.0 Turbidity			-				

Consumers E	nergy			Equ	ipment De	tails	1	Model & S	5/N	
aboratory	Services			Monitor Brand			YSI ProDS	S S/N 22L	102214	
CENTURY OF	EXCELLENCE			Sonde Brand			YSI ProDSS S/N 22J103704			
Sonde ID	22J			Flow	Flow Cell			080		
Start Date	10.3.24			DO	DO Probe 96.9			S S/N 23B	101266	
Project #	24-083	Turb	idity Probe	- 1	YSI ProDS	S S/N 22K	100049			
Site	JRW			pH V	pH With ORP			YSI ProDSS S/N 23A103253		
Reviewed By & Date	Y	10-11-24	e		ductivity & perature Pr	obe	YSI ProDS	S S/N 230	105385	
pH Standa	rd			ect on	ield s ed	aily Field hecks	aily Field hecks heted	aily Filed hecks npleted	ect on	
pri Stanua	Source	Source	Source Exp.	-Project ibration /alue	aily Field hecks npleted	aily F necks	neck:	aily F lecks	Project ibration /alue	

(± 0.1)	Source	Source Lot #	Source Exp. Date	Pre -Pro Calibrat Value	1 st Daily I Check Comple	2 nd Daily Check Comple	3rd Daily Check Comple	4 th Daily Check Comple	End Pro Calibrat Value
4.0	GFS # 1634	24003185	5.31.25	3.99					4.03
7.0	GFS # 1639	24004517	7.26.25	6.99					7.04
10.0	GFS # 1645	24003156	5.28.25	10.02					9.99
			Initials & Date:	KDR 10.2.24					104.24

Is the same standard used for calibration and as-founds? . N

N (if no, document on pg. 2) N (if no, recalibration is required) or or

Are the calibration values within ±0.10 of the standard?	

ORP Standard (± 10mV)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1 st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3 rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
<u>+ 228.0</u> (mV)	4F5#	24009576	11.25.24	223.6					2,23,1
	1	1	Initials & Date:	KDR 10.2.24					KDR- 10.4.24
			oration and as-founds? 0% of the standard?	() ()	or N (if		ment on ibration is		

DO	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1 st Daily Field Checks Completed	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4 th Daily Filed Checks Completed	End Project Calibration Value
90-110% saturation	DI Water	N/A	N/A	97.3					96.1
			Initials & Date:	KDR 10.2.24		1			14 DR

Sonde ID 22	2J			Project #:						
Start Date	0.3.22	1		2	4-08	332,-	-083	3		
Reviewed By & Date:	Y	C' 10-11	- 24	Site: JRW						
	0									
Specific Conductance (uS/cm)	Source	Source Lot #	Source Exp. Date	Pre -Project Calibration Value	1st Daily Field Checks	2 nd Daily Field Checks Completed	3rd Daily Field Checks Completed	4 th Daily Field Checks Completed	End Project Calibration	
1413	GFS# 2174	24006158	10.4.24	1404					1400	
			Initials & Date	10.2.2L	1	1			16-4-2	
			on and as-founds of the standard?	¹⁷ 8		if no, docu if no, reca			4)	
				Pre -Project Calibration Value		if no, reca			to e	
Are the cal Turbidity	libration value	s within range	of the standard? Source Exp.	° 8	or N (if no, reca	libration i	s required		
• Are the cal Turbidity (NTUs)	libration value	s within range	of the standard? Source Exp.	Pre -Project Calibration Value	or N (if no, reca	libration i	s required	End Project Calibration	
 Are the cal Turbidity (NTUs) 0 40.0 	libration value Source DI Water Hach	Source Lot #	of the standard? Source Exp. Date 4.25	O Pre - Project O Calibration Value	or N (if no, reca	libration i	Completed Completed	Collibration	

Additional Information for calibration standards

Standard	Source	Source Lot #	Source Exp. Date	Standard	Source	Source Lot #	Source Exp. Date
pH 4.0		1		pH 9.0 Check	-		
pH 7.0				ORP			
pH 10.0							
Sp. Conductivity							
40.0 Turbidity							
10.0 Turbidity							

Pond 1 & 2

Laboratory S				Consumers En toring Well Sa		Sector Sector Sector Sector				
	V-MW-150 Whiting	20]	Date 10.03.24 Control Number 24-0832-01 Well Material: V PVC SS Iron Galv. Steel							
Purge Metho	d: 🗸	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er	
Depth to Wa	ter Tape: Sol	inist 10	IPT S/N	: LS0306	23					
QC SAMPLE:		IS/MSD	DUP_		Sonde ID:	15M	19H	_20M21G	<u>⁄</u> 22J	
Depth-to-wa	ter T/PVC (ft) _	5.83	Depth-To-B	ottom T/PVC	(ft) 81.96	-	Completed b	KOR LMO		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity	
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU	
3-5 min	+/- 0.1	NA	+/-3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%	
1333		15.4.1	Stablizatio	on parameters f	or the last thre	e readings	1.01			
1338	started	Pump	1001	UE E	11.110		196e	5.91	2 7	
	7.64	16.6	1081	45.5	4.40	+0.9	196	5.91	3.83	
1342	7.64	16.1	1079	41.3	4.05	+ 11.8	194	5.91	3.93	
134Le	7.61	16.0	1080	36.0	3.54	+17.0	196	5.91	4.35	
1350	7.57	15.5	1076	26.4	2.40	+1.0	196	5.91	5.39	
1354	7.56	15.6	1077	22.3	2.20	-49.5	194	5.91	5.73	
1358	7.56	15.8	1077	15.3	1.48	- 88.1	196	5.91	7.8Ce	
1402	7.56	15.9	1080	12.3	1.21	-98.5	194	5.91	7.12	
1406	7.57	16.0	1077	9.5	0.92	-110.2	196	5.91	6.89	
1410	7.57	15.9	1076	7.9	0.77	-116.2	194	5.91	7.25	
1414	7.58	15.8	1078	6.5	0.63	-121.5	194	5.91	7.41	
1418	7.58	16.1	1076	5.3	0.52	-123.9	196	5.91	7.71	
1422	7.58	15.8	1074	4.5	0.45	-124.4	194	5.91	7.67	
1426	7.59	15.7	1075	4.3	0.42	- 125.6	1900	5.91	7.84	
1430	7.58	15.7	1078	4.1	0.40	- 127.9	196	5.91	1.55	
Total Pump 1	ime (min): 5	58	Total Purge V	olume (gal) :	~ 3.0	-	Review Date:	10-11-24		
Weather:	70 F 500						Review By:			
Comments:	1431 50	mple col	e collectu		N.			8		
	s Filled		tive Codes:			D4 D-NaOH E	HCI E.			
			Preservative	A CONTRACT	Contract 1			Preservative	Filhe and Martin	
Quantity	Size 250mL	Type HDPE	Code A	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N	
i	125 mL	T	A	T						
1	125mL		В	1						

Ganton Laboratory Ser	Us			Consumers Ene toring Well Sa		All and an and a second s					
Well ID <u>JRW</u> Location <u>JR</u>			Date 10.03.24 Control Number 24-0832-02 Well Material: PVC SS Iron Galv. Steel								
Purge Method	i: 🔽	Peristaltic	Submersible Bladder Fultz Bailer								
Depth to Wate	er Tape: Sol	onist 101	P7 S/N	: LS0306	23			_	_		
QC SAMPLE:	N	MS/MSD	DUP_		Sonde ID:			20M21G			
Depth-to-wate	er T/PVC (ft)	14.55	Depth-To-Bo	ottom T/PVC ((ft) <u>92.25</u>	-	Completed by	KORILM	0		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3% Stablizativ	+/- 10% on parameters fo	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
0919	to fair and get		Stubilzutit	on purumeters je	of the last the	eTeddings	188	14.58			
started 0921	0.000	13.3	1070	17.11	1.74	- 111.Le	188	14.58	3.06		
0925	7.48	13.3	1078	17.4	0.03		188				
	7.58			(e · 1		-133.3	188	14.57	7.17		
0929		13.2	1105	4.1	0.42	- 144.4		14.57	3.90		
0933	7.59	13.3	1111	3.2	0.33	-152.0	188	14.57	4.40		
0937	7.60	13.3	1111	2.8	0.28	-156.1	188	14.57	4.62		
0941	7.60	13.3	1114	2.4	0.25	-159.4	188	14.57	4.54		
0945	7.60	13.4	1114	2.2	0.23	-161.2	188	14.57	4.34		
0949	7.40	13.4	1111	2.2	0.22	-162.6	188	14.57	4.28		
0950	collecte	d sample									
0953	End sa	mple coll-	ection								
Total Pump Ti			Total Purge V	olume (gal) :	~1.5		Review Date:	0.4	ч		
Weather:	40'F, 50	inny					Review By:	T			
Comments:	_								_		
Bottles	s Filled	Preservati	ive Codes:	A-NONE B-H	HNO3 C-H2S	04 D - NaOH I	E-HCIF				
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N		
1	250 mL	HDPE	A	N							
	125mL	HDPE	A	N							
L	125 mL	HDPE	В	N							

Monitoring Well Sampling Worksheet_REV7_040824_EB

Laboratory Se				Consumers Ene toring Well Sa		20.00			
Well ID <u>JR</u> Location <u>JR</u>	W-MW-15 Whiting	<u>003</u>	Date <u>10.03</u> V	5.24 Well Material:	PVC		Der <u>24-083</u> Iron	32-03, 24-0 Galv. Steel	0832-07
Purge Metho	d:	Peristaltic	Sul	bmersible	Blac	dder	Fultz	Bail	er
Depth to Wa	ter Tape: Sol	onist 101	PT S/N	: LS0306	23				
QC SAMPLE:	<u> </u>	ns/msd	J DUP-	1.155	Sonde ID:	15M	19H	_20M21G	i <u>√</u> 22J
Depth-to-wat	ter T/PVC (ft)	11.64	Depth-To-Bo	ottom T/PVC (ft) 90.29	_	Completed by	KOR LMO	
Time	pH	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
11111	1000 March 100		Stablizatio	on parameters fo	or the last three	e readings	101	it tale	
1002	started		100000000				136e	11.66	
1005	7.57	14.4	993	20.3	2.01	- 56.4	136	11.666	7.22
1009	7.56	14.0	988	8.0	0.79	- 43.5 50.1 Lmo 10.3.24	136	11.66	7.44
1013	7.56	14.0	986	6.4	0.45	- 35.5	136	11.66	8.30
1017	7.56	13.9	986	5.le	0.58	-26.1	136	11. lele	Le. Le2
1021	7.55	13.9	985	5.2	0.53	- 22.1	136e	11.66	7.33
1025	7.55	13.8	985	4.9	0.50	-19.5	134	11.666	7.73
1029	7.56	13.9	984	4.8	0.49	- 17.1	134	11.66	Т.85
1030	1.000	ed samp							
1037			and the second second						
1001	tha so	imple c	ollection						
Total Pump T	ime (min): ဥ	8	Total Purge V	olume (gal) :	~1.0		Review Date:	10-11-24	1
Weather:	60.4, SUN	ny	-				Review By:	T	
Comments:								V	
Bottle	s Filled	Preserva	tive Codes:	A-NONE B-H	INO3 C - H2SC	04 D - NaOH E	- HCI F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
2	250 mL	HOPE	A	N.					
2	125mL		A						
2	125mL	1	B						

Laboratory S	we Uz			Consumers End itoring Well Sa	Contraction of the second s						
	W-MW-19 Whiting		Date IO.03.24 Control Number 24-0832-04 Well Material: PVC SS Iron Galv. Steel								
Purge Metho	d: 🗸	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er		
Depth to Wa	ter Tape: So	olunist 10	OL PT S/N	: LSO30Let	23						
QC SAMPLE:		MS/MSD	DUP_		Sonde ID:	15M	19H	_20M21G	<u>√</u> 22J		
Depth-to-wa	ter T/PVC (ft)	13.73	Depth-To-B	ottom T/PVC ((ft) <u>96.46</u>	2	Completed b	KORLLMO	,		
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU		
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%		
	Latin	P.F.S.	Stablizati	on parameters f	or the last three	e readings					
1649	started	pump	1 2 2 2				188	13.73	17 At 17		
1052	7.55	15.5	956	22.2	2.18	+ 39.5	188	13.73	3.98		
1050	7.51	15.2	952	17.3	1.71	+40.4	188	13.73	3.75		
1100	7.50	15.2	951	15.2	1.52	+42.0	188	13.73	4.15		
1104	7.50	15.2	951	14.4	1.44	+ 43.1	188	13.73	4.72		
1108	7.50	15.3	951	14.0	1.40	+45.0	188	13.73	4.74		
1112	1.50	15.2	949	13.9	1.38	+46.9	188	13.73	4.81		
1113	collect	ed same	de								
1110	1940 Chick 1947	1.01.000	ollection)							
							1				
					1						
		1									
Total Pump	Time (min):	74	Total Purge V	olume (gal) :	~1.0		Review Date:	10-11-24	4		
Weather:		sunny	Total Turbe T	oranic (Bar) i			Review By:	01.			
		sonng			-		nenew by.	1			
Comments:								V			
Bottle	s Filled	Procorus	tive Codes:		INO2 C H250	A D NOUL					
Bottie	srilled	Freserva	Preservative	A-NONE B-H	1NO5 C- H250	D4 D-NaOH		Preservative			
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N		
1	250 mL	HDPE	A	N							
i	125 mL		AB								
	125 mL	-	P	1							

Country Se	nta			Consumers Ene itoring Well Sa							
	W-MW-150 Whiting		Date <u>(0.03</u>	3.2ц Well Material:	PVC		ber <u>24-0 82</u> Iron	32-05 Galv. Steel	27		
Purge Metho	d: 🔽	Peristaltic	Su	Submersible Bladder Fultz Bailer							
Depth to Wat	ter Tape: Sol	Lonist 10	IPT S/N	: 15030 62	13	_			_		
QC SAMPLE:	n i	MS/MSD	DUP_		Sonde ID:	15M	19H	_20M21G	<u>√</u> 22J		
Depth-to-wat	ter T/PVC (ft)	12.45	Depth-To-B	ottom T/PVC (ft) <u>93.65</u>		Completed b	Y KOR LMO			
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity		
min 3-5 min	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min *	Drawdown ft < 0.33	NTU +/- 10%		
		1	Stablizatio	on parameters fo		e readings	1	-			
11200	started	Pump				1	192	12.71			
1130	7.69	15.4	876e	24.6	2.38	+54.7	192	12.71	4. (1		
1134	7.629	15.0	875	13.4	1.34	+55.0	192	12.71	2.58		
1138	7.69	15.0	874	11.4	1.14	+ 55.4	192	12.71	2.84		
1142	7.69	15.0	873	10.8	1.08	+56.3	192	12.71	2.99		
1146	7.68	15.0	874	10.5	1.06	+ 56.8	192	12.71	3.47		
1150 1140 uno 10.3124	7.68	14.9	874	10.2	1.02	+ 57.7	192	12.71	3.68		
1154	7.68	15.0	874	10.1	1.01	+57.8	192	12.71	3.54		
1155	10.000	ed samp					110	16.11			
1158	Contract Contractor										
1150	end sa	mple col	lection								
						1	8				
-											
Total Pump T	ime (min): 2	1.0	Total Purge \	(olumo (gal) :	- 1.5		Review Date:	10-11-24			
Weather:	105 F 50		Total Fulge v	'olume (gal) :	01.9		Review Date:		<u>\</u>		
Weather,	<u> 100 1 20</u>	onny					Review by,				
Comments:								U			
Bottle	s Filled	Preserv	ative Codes:	A NONE Bak	NO2 C- H25	04 D - NaOH					
Dottie	SFilled	Freserve	Preservative	A-NONE B-H	INUS C- H25			Preservative			
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N		
<u> </u>	250ml	HOPE	A	N		1					
1	125mL		A								
1	125mL	1	B		1						

Monitoring Well Sampling Worksheet_REV7_040824_EB

Laboratory Se	7 Kila			Consumers En itoring Well Sa					
Well ID <u>JRW</u> Location <u>JR</u>	-MW-1500 Whiting	ble	Date <u>10.03</u>	• 24 Well Material:	PV0		ber <u>24-083</u> Iron	1-,0)- رە)- 1 Galv. Steel	
Purge Metho	d: 🗸	Peristaltic	Su	bmersible	Bla	adder	Fultz	Bail	er
Depth to Wat	er Tape: Sol	inist 101	PT S/N	: LS0306	23				
QC SAMPLE:		ns/msd	DUP_	_	Sonde ID:	15M	19H	_20M21G	_ √ 22J
Depth-to-wat	er T/PVC (ft)	4.90	Depth-To-B	ottom T/PVC	(ft) <u>82.97</u>	<u> </u>	Completed b	KDR/LMO	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min 3-5 min	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min *	Drawdown ft < 0.33	NTU +/- 10%
			Stablizati	on parameters f	or the last thre	ee readings	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	
1210	started	pump			10.1.19.17		132	4.91	-
1219	7.75	17.1	962	36.4	3.48	+ 64.3	132	4.91	3.24
1218	7.74	162.62	962	+31.le	3.07	+64.9	132	4.91	3.11
1222	7.73	16.7	962	30.2	2.93	+66.0	132	4.91	3.79
1226	7.72	16.7	402	27.4	2.05	+67.0	132	4.91	3.58
1230	7.69	16.6	962	25.0	2.41	+68.0	132	4.91	3.89
12.34	7.67	16.6	964	21.5	2.05	+68.5	132	4.91	3.72
1238	7.65	14.5	965	18.0	1.73	+68.1	132	4.91	4.17
1242	7.63	16.6	961	14.2	1.37	+67.1	132	4.91	4.62
1246	7. (el	16.8	969	7.2	0.70	+15.0	132	4-91	7.50
1250	7.61	16.6	969	6.4	0.62	- 22.4	132	4.91	7.64
12.54	7.62	16.5	giele	5.8	0.56	- 50.5	132	4.91	7.82
1258	7.62	16.6	9 Lele	5.1	0.49	-74.6	132	4.91	7.67
1302	7.64	16.9	970	4.8	0.46	-98.0	132	4.91	7.51
1306	7.65	16.8	970	4.5	0.44	- 117.2	132	4.91	7.78
	ime (min): on		Total Purge V		• • • •		Review Date:		
Weather:	65 F 500		Total Turge V	ordine (Bul) :			Review By:	0.4	
	020 301						neview by:	ð	
Comments:	s Filled	Department	ive Codes:			OA D NEOU		-	
Bottle	srilled	Preserva	Preservative	A-NONE B-	1105 C-H25	O4 D - NaOH E	- HUI F	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	250mL	HDPE	A	N					
3	125mL		A						
3	125 ML	1	H B nd <1 gal/min for						

Case Case Laboratory S				Consumers En itoring Well Sa		· · · · · · · · · · · · · · · · · · ·			
Well ID JR	J-MW-ISC	000	Date 10.03	3.24		Control Num	ber 24-083	12-0(0,-10,	-11
Location	Whitin	9		Well Material:	PV0		Iron	Galv. Steel	
Purge Metho	d: 🗸	Peristaltic	Su	bmersible	Bla	adder	Fultz	Bail	er
Depth to Wa	ter Tape: Sc	unist 1	01 07 S/N	: LS0300	72				
QC SAMPLE:		MS/MSD	DUP_		Sonde ID:	15M	19H	_20M21G	i <u>~</u> 22J
Depth-to-wa	ter T/PVC (ft)	4.90	Depth-To-B	ottom T/PVC	(ft) <u>82.9</u> -	Ļ	Completed b	y KOR, UMO	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat,	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10% on parameters f	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
1210	7.67	16.4	968	4.2		-129.1			7 1.7
1310						Contraction of the second	132	4.91	7.67
	7.68	16.7	967	3.9	0.38	-137.1	132	4.91	7.54
1318		16.7	967	3.8	0.37	-138.9	132	4.91	7.48
1319	collect	ed sam	pie						
1322	Cha Sa	in ple ce	offection -						
Total Pump 1	ime (min): (<i>,</i> 9	Total Purge V	olume (gal) :	~2.5		Review Date:	10-11-2	ч
Weather:	Les . F SUN	~ 1		10-1	- •		Review By:		
Comments:								0	
Bottle	s Filled	Preserva	tive Codes:	A-NONE B-H	1NO3 C- H25	O4 D - NaOH	E-HCLE-		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	250 mL	HOPE	A	N	1				
3	125 mL		A						
3	125ml		B						

Laboratory S	ervices			Consumers End itoring Well Sa					
Well ID <u>EB</u> Location <u>J</u>	-ol Whiting)	Date <u>10.03</u>	3.2.4 Well Material:	PVC	Control Num	ber <u>24 - 08;</u> Iron	32 - 08 Galv. Steel	
Purge Metho	od:	Peristaltic	Su	bmersible	Blac	lder	Fultz	Bail	er
Depth to Wa	ter Tape:		S/N	l:					
QC SAMPLE:		/IS/MSD	DUP_	-	Sonde ID:	15M	19H	_20M21G	22J
Depth-to-wa	ter T/PVC (ft)		Depth-To-B	ottom T/PVC (ft)	-	Completed b	KORILMO	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/-10%
			Stablizati	on parameters f					
1441	Sample	collect	ed						-
			1						
		-							
						-			
						_			
Total Pump	Time (min):	-	Total Purge V	olume (gal) :		_	Review Date:	10-11-24	1
Weather:							Review By:		-
								ð	
Comments:									
Bottle	es Filled	Preserva	Preservative	A-NONE B-H	INO3 C - H2SO	4 D - NaOH	E - HCI F	Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	250mL	HOPE	A	N					
T.	125 mL		A						
1	125 mL		B						

Laboratory S	Services			Consumers En itoring Well Sa					
Well ID <u>F</u> Location <u>J</u> Purge Meth	R Whiting) Peristaltic		Well Material:	PVC	Control Num	nber <u>24-08</u> Iron Fultz	32–09 Galv. Steel	ler
Depth to Wa	ater Tape:		S/M	J:					
QC SAMPLE		MS/MSD	DUP_		Sonde ID:	15N	1 <u>1</u> 19H	_20M21G	i22J
Depth-to-wa	ater T/PVC (ft)		Depth-To-B	ottom T/PVC	(ft)	_	Completed b	y KOR/LMO	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min 3-5 min	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min	Drawdown ft < 0.33	NTU +/- 10%
				on parameters f					1/- 10/0
1438	Sample	collecte	d						
ļ									
Total Pump	Time (min):	-	Total Purge V	olume (gal) :	_		Review Date:	10-11-2	4
Weather:	TO'F SUN	14			- C		Review By:	0	
Comments:		-1	w.					ð	
	es Filled	Preserva	tive Codes:	A-NONE B-H	INO3 C-H2SO	4 D - NaOH	E-HCIF-		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	250mL	HOPE	A	N					
1	125mL 125mL		A B						
* Pump rate sho	ould be <500 mL/n	nin for low-flow a	nd <1 gal/min for I	high Volume.					

Pond 6

Laboratory Se	ntig				ergy Compan ampling Work				
	v-mw·16		Date <u>10.3</u>	३ · २. ५ Well Material:	PVC	Control Numl	per <u>24-68</u> Iron	33 · 01 Galv. Steel	1
Purge Metho	d: 🗸	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er
Depth to Wa	ter Tape: G	eotech	S/N	: 7371					
QC SAMPLE:		MS/MSD	DUP_	_	Sonde ID:	<u> </u>	19H	_20M21G	22J
Depth-to-wat	ter T/PVC (ft)	16.98	Depth-To-B	ottom T/PVC	(ft) <u>84.00</u>		Completed b	YCIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0,1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/-10mV	*	< 0.33	+/- 10%
		-	Stablizatio	on parameters ;	for the last three	e readings			
1035	Start	ed pumi	0				420	16.98	_
1038	10.79	13.2	667	43.3	4.53	+76.3	420	16.98	15.96
1040	starte	d high	volume	purge	@ 1000ml	Imin			
1125	8.59	13.6	733	8.7	0.89	-170.6	1000	16.98	7.72
	Lower	ed pum	p speed	for.	Stabiliza	tion	ſ		
	Itigh	1	purge	and the second sec	the state was a set of the	DOMLIMIA	= 17	gallons	
1140	8.14	14.7	755	5.7	0.57	-160-8	400	16.99	6.63
1145	8-11	14.8	751	S.Z	0.52	-156.6	400	16.99	5.17
1150	8.11	14.9	748	5.1	0.51	-156.0	400	16.99	5.09
1155	8.10	14.9	748	4.9	0,50	-155.3	400	16.99	4.88
	8.10	14.8	740	4.9	0.50	- 154.6		16.99	4.91
1200				4.4	0.50	- 154.0	406	10.14	7.17
1201	end	ted Sam	pie						
Total Pump T	ïme (min):	86	Total Purge V	olume (gal) :	~14.5		Review Date:	10-11-1	щ
Weather:	670	F, Sunr	14		total		Review By:	1	t
		/	-1.,					PH	1
Comments:								7.5-8.	9
Pottla	s Filled	Brocorust	ive Codes:			04 D - NaOH I	L. HCL E		
Bottle	s rilleu	Preservat	Preservative	A-NOIVE B-	1105 C-H250			Preservative	
Quantity	Size	Туре	Code	Filtered Y/N	Quantity	Size	Туре	Code	Filtered Y/N
1	125mL	HDPE	B	N					
	125mL		A N						
	250ML	V	A	V					

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cantin Laboratory Se				Consumers En Itoring Well Sa		Sector Se			
CC SAMPLE: MS/MSD \checkmark DUP - $\diamond 2$ Sonde ID: \checkmark 15M 19H 20M 216 Depth-to-water T/PVC (ft) 13.12 Depth-To-Bottom T/PVC (ft) 94.25 Completed by £16 Time pH Temp Sp Cond DO DO OR Pump Rate Water level Tur min units 'C us/ms $\psi/38$ ppm M m//min Drawdown ft N 3.5min $\psi/0.1$ NA $\psi/38$ $\psi/108$ $\psi/0.3pm$ $\psi/10mV$ $\ll 0.33$ $\psi/108$ 1050 S4arded pomp Stabilization parameters for the last three readings 240 13.24 5. 1057 7.777 13.8 994 5.5 0.571 -159.4 240 13.24 5. 1100 7.64 13.9 10002 4.4 0.446 -152.5 240 13.24 4. 1110 7.60 13.6 1062 4.7 0.443 -148.5 240 13.24 4. 1110 7.60 13.9 1001 4.1 0.433	Location <u>1</u>	R whiti d:	ng	\ \	Well Material:		c ss	Iron	Galv. Steel	
Depth-to-water T/PVC (ft) 12.12 Depth-To-Bottom T/PVC (ft) 94.251 Completed by $\underline{c1c}$ Time pH Temp Sp Cond DO DO ORP Pump Rate Water level Tur min units c us/cm % sat. ppm mV mU/min Drawdown ft N 3.5 min +/-0.1 NA +/-3% +/-10% +/-0.3ppm mV mU/min Drawdown ft N 10550 Statilization parameters for the last three readings 2.40 13.24 5. 10550 Statilization parameters for the last three readings 2.40 13.24 5. 1100 7.64 13.9 1000 4.4 0.40 -152.5 2.40 13.24 4. 1110 7.60 13.4 1062 4.2 0.412 -148.5 2.40 13.24 4. 1110 7.60 13.9 1062 4.2 0.412 -148.5 2.40 13.24 4. 1110 7.60 13.9 1061 4.1 0.42 148.0 2.40	Depth to Wat	ter Tape: 🧲	neotecr	S/N	: 7371					
Time pH Temp Sp Cond DO DO ORP Pump Rate Water level Tur min units 'C US/cm % sat. ppm mV mL/min Drawdown fit N 35 min $4/0.1$ NA $4/3\%$ $4/10\%$ $4/0.3pm$ $4/10\%$ < 0.33 $4/10\%$ 1050 $5+arled$ pump Stabilization parameters for the last three readings 240 13.244 $< 1055 7.777 13.8 994 5.5 0.571 -159.4 240 13.244 << 1100 7.424 13.9 100\% 4.4 0.44\% -152.5 240 13.244 << 1110 7.422 13.71 1002 4.4 0.44\% -152.5 240 13.244 4.1 1110 7.42 13.9 10024 4.2 0.443 -148.0 240 13.244 4.1 1120 7.61 1$	QC SAMPLE:		IS/MSD	DUP_	62	Sonde ID:	<u> </u>	19H	_20M21G	i22J
min units 'C us/cm % sat. // 3% ppm mV mL/min Drawdown ft N 35 min +/-0.1 NA +/-3% +/-10% +/-0.3ppm +/-10mV * <0.33 +/ 1055 54arted pump N 13.24 240 13.24 5. 1055 7.77 13.8 994 5.5 0.57 -159.4 240 13.24 5. 1105 7.64 13.9 1000 4.4 0.46 -152.5 240 13.24 5. 1105 7.62 13.7 1002 4.4 0.46 -152.5 240 13.24 4. 1110 7.60 13.6 1062 4.2 0.43 -148.5 240 13.24 4. 1110 7.60 13.8 1001 4.1 0.43 -148.0 240 13.24 4. 1120 7.61 13.9 1004 4.2 0.44 -147.0	Depth-to-wat	er T/PVC (ft)	13.12	Depth-To-B	ottom T/PVC	(ft) 94.2	2	Completed b	y <u>cie</u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-5 min	+/-0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	the Rest of the Armonia and the	+/- 10%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			Stablizatio	on parameters f	or the last thre	ee readings			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1050	Start	ed pun	00				240	13.24	
$\frac{1100}{1.64} \frac{13.9}{13.7} \frac{1000}{1002} \frac{4.4}{0.46} \frac{0.46}{-154.3} \frac{154.3}{240} \frac{240}{13.24} \frac{5.5}{5.4} \frac{1100}{13.24} \frac{5.5}{1105} \frac{1100}{1.62} \frac{13.7}{1002} \frac{1002}{4.2} \frac{4.4}{0.46} \frac{0.46}{-152.5} \frac{240}{240} \frac{13.24}{13.24} \frac{4.5}{1100} \frac{1100}{1.60} \frac{13.8}{1002} \frac{1002}{4.2} \frac{4.2}{0.43} \frac{-148.5}{-148.0} \frac{240}{240} \frac{13.24}{13.24} \frac{4.5}{1120} \frac{1120}{1.601} \frac{13.9}{1004} \frac{1004}{4.2} \frac{4.2}{0.44} \frac{-147.9}{-147.9} \frac{240}{240} \frac{13.24}{13.24} \frac{4.5}{3} \frac{1121}{1121} \frac{10012}{10012} \frac{1004}{13.9} \frac{4.2}{1004} \frac{0.44}{-147.9} \frac{-147.9}{240} \frac{240}{13.24} \frac{13.24}{3} \frac{4.5}{1121} \frac{1121}{10012} \frac{1004}{13.4} \frac{4.2}{1004} \frac{0.44}{-147.9} \frac{-147.9}{240} \frac{240}{13.24} \frac{13.24}{3} \frac{4.5}{1121} \frac{1121}{10012} \frac{1004}{1004} \frac{4.2}{4.2} \frac{0.44}{-147.9} \frac{147.9}{240} \frac{13.24}{13.24} \frac{4.5}{3} \frac{1121}{121} \frac{10012}{10012} \frac{1004}{1004} \frac{4.2}{100} \frac{1004}{1004} \frac{1004}{1004} \frac{4.2}{100} \frac{1004}{1004} \frac{4.2}{100} \frac{1004}{1004} \frac{4.2}{100} \frac{1004}{1004} \frac{4.2}{100} \frac{1004}{1004} \frac{4.2}{100} \frac{1004}{1004} \frac{4.2}{100} \frac{1004}{100} 4.2$	1055				5.5	0.57	-159.4	240	13.24	5.86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.64		1000	4.4	0.49	-154.3		10722 Sec. 5	5.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		122220027			4.4		-152.5			4.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13.6			0.43	-148.5			4:36
1120 7.61 13.9 1004 4.2 0.44 -147.9 240 13.24 3. 1121 Collected Sample - - - - - - 3. end - - - - - - - - 3. Total Pump Time (min): 31 Total Purge Volume (gal): 2.0 Review Date: 6.44-24 Weather: (f10F, Gunny) Review By: - - - -					100.0	0.43				4.15
1121 COLLECTED Sample Image: Sample Image: Sample end image: Sample image: Sample Image: Sample Image: Sample end image: Sample image: Sample Image: Sample Image: Sample Image: Sample end image: Sample image: Sample image: Sample Image: Sample Image: Sample Image: Sample Image: Sample image: Sample image: Sample image: Sample Image: Sample Image: Sample Image: Sample Image: Sample image: Sample image: Sample image: Sample Image: Sample Image: Sample Image: Sample Image: Sample Image: Sample image: Sample Image: S	1. 1. 1. 1. 1. 1.		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	the second second		100 / 10 / 10 P			1	3.95
End Image: Sector of Control End Image: Sector of Control Image: Sector of Control Image: Sector of Control	10.00								12.24	
Total Pump Time (min): 31 Total Purge Volume (gal): 1.2.0 Review Date: 10-11-24 Weather: 1010F, 500004 Review By: PH		1 Prove Prove		ann -						
Weather: UTOF, GUNNY Review By:		Cha								
Weather: UTOF, GUNNY Review By:										
Weather: UTOF, GUNNY Review By:										
Weather: UTOF, GUNNY Review By:	T		2,		1 / 1					
<u></u> <u>PH</u> 7.5.8.3		A	21	Total Purge v	olume (gal) :	12.0	-		0	A.
comments: collected Field DUP	Weather:	_ Gor,	Sunny					Review By:	PH	3
	Comments:	coll	ected t	Field 1	NP		-			-
Bottles Filled Preservative Codes: A - NONE B - HNO3 C - H2SO4 D - NaOH E - HCI F -	Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2S	04 D - NaOH E	- HCI F-		
Quantity Size Type Code Filtered Y/N Quantity Size Type Code Filtered Y/N	Quantity	Size	Туре		Filtered Y/N	Quantity	Size	Туре	0.000000000000000	Filtered Y/N
2 125ML HDPE B N	2	125ML	Disc and	B						
2 125mL 1 A 1	2	125mL	1					_		
2 250 ML + A +		250ML	4		ł					
* Pump rate should be <500 mL/min for low-flow and <1 gal/min for high Volume.	* Pump rate sho	uld be <500 ml /m	in for low-flow on	d <1 gal/min for l	hiah Volume	-				

Laboratory Ser				Consumers En itoring Well Sa					
Well ID <u>JRV</u> Location Purge Method	JRWhi			<u>3・24</u> Well Material: bmersible			oer <u>24-08</u> Iron Fultz	<u>,33- 03</u> -1(Galv. Steel	
Depth to Wate	er Tape: G	eotech	S/N	1: 7371	-				
QC SAMPLE:		ns/msd	DUP_	_	Sonde ID:	<u>1</u> 5M	19H	_20M21G	i22J
Depth-to-wate	er T/PVC (ft)	13.40	Depth-To-B	ottom T/PVC	(ft) <u>36.0</u>	Ц	Completed b	V CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			Stablizati	on parameters	for the last thr	ee readings	1	1	
1500	Star	led pi	mp				225	13.43	
1505	7.69	13.9	980	6.0	0.62	- 157.0	225	13.43	3.42
1510	7.68	13.9	979	4.5	0.46	-142.3	225	13.43	2.95
1515	7.68	13.8	976	4.0	0.41	-164.5	225	13.43	2.92
1520	7.69	13.8	974	3.9	0.40	-165.3	225	13,43	2.44
1525	7.69	13,7	974	3.8	0.39	-165.7	225	13,43	2.20
1530	7.69	13.8	970	3.8	0.39	-145.9	225	13.43	2.16
1531					0. 0			1-115	
	Collect	a un	IPIC		-				
1530	end							1	
Total Pump Ti	ime (min):	31	Total Purge \	/olume (gal) :	~2.0		Review Date:	10-11-1	24
Weather:		Sunny	i otari ange i	oranie (Bar) i			Review By:	B A*	
								ð	
Comments:	10	onected	FIELD M	SIMSD	A				-
Bottles	s Filled	Preserva	tive Codes:	A-NONE B-	HNO3 C-H2	504 D-NaOH	E - HCI F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
			B	N					
3	125 mL		A						
I	250mL	1	A	+					
3 3 1	125 mL 125 mL 250 ML	H.DAE T	B A	N V					

Laboratory Se				Consumers En toring Well Sa					
	W-MW- JR Whi-		Date <u>10 · 0</u> \	<u>3-24</u> Well Material:	PVC	Control Numb	ber <u>24 · 08</u> Iron	33-04 Galv. Steel	
Purge Metho	d: 🔽	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bail	er
Depth to Wa	ter Tape: Ga	otech	S/N	: 7371					
QC SAMPLE:		IS/MSD	DUP_		Sonde ID:	<u>~</u> 15M	19H	_20M21G	22J
Depth-to-wa	ter T/PVC (ft)	13.74	Depth-To-B	ottom T/PVC	(ft) <u>88.8</u> 4	Ŧ	Completed b	V CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/-10mV	*	< 0.33	+/- 10%
120			Stablizatio	on parameters f	or the last thre	e readings			
1415	Start	ed pu	mp				250	13.78	
1420	7.88	14.2	1099	4.2	0.43	-167.9	250	13.78	4.29
1425	7.70	14.1	1147	3.7	0.38	-198.1	250	13.78	3.08
1430	7.66	14,1	1150	3.4	0.37	-197.1	250	13.78	3.37
1435	7.45	14.1	1154	3.6	0.37		250	13.78	3.31
1440	7.65		1149	3.5	0.36	-200.4	250	13.78	2.04
1441		ted Gun		9.5	0.50	200,0	150	15, 16	2.01
1-1-11		HEA JUAN	npie						
Total Pump 1	ime (min):	3.0	Total Purge V	olume (gal) :	12.5		Review Date:	(0-11-2)	4
Weather:	70°F	Sunn	.4				Review By:	Y	
Comments:								0	
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-H	HNO3 C - H2SO	04 D-NaOH E	- HCI F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
]	125mL	plastic	B	N	quantity	5120	туре	code	Thered I/N
1	125mL	Plusic	D A	1					
j	250mL	ł	A	1					

Laboratory Se				Consumers En itoring Well Sa	the second second second				
	W-NW-II JRWhi		Date <u>10-</u>	<u> 3 · 고닉</u> Well Material:		Control Num	ber <u>24-08</u> Iron	<u>33 - 65</u> Galv. Steel	
Purge Metho	d: 🗸	Peristaltic	Su	bmersible	Bla	dder	Fultz	Bai	er
Depth to Wat	ter Tape: G	leotech	S/N	: 7371					
QC SAMPLE:		MS/MSD	DUP_	-	Sonde ID:	<u> </u>	19H	_20M21G	22J
Depth-to-wat	ter T/PVC (ft)	16.55	Depth-To-B	ottom T/PVC	(ft) <u>91.41</u>	-	Completed b	V_CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
			1	on parameters f	for the last thre	e readings			
1215	Sta	rted F	oump				200	16.56	
1220	7.29	14.4	852	6.1	0.62	+27.2	200	-16.56	3.28
1225	7.30	14.3	853	5.5	0.56	+31.4	200	16.56	2.23
1230	7.30	14.0	852	5.Z	0.54	+ 33.7	200	16.56	1.90
1235	7.30	14.2	852	5.0	0.51	+35.3	200	16.56	1.29
1240	7.31	14.2	850	4.9	0.50	+35.2	200	16.56	1.22
1241	Coll		Sample				200	10.00	
1242	end		Sample						
Total Pump T Weather:		26	Total Purge V	olume (gal) :	115		Review Date:		4
Comments:	<u>67°F,</u>	Sunnel					Review By:	<u>P</u> H 7.3-8.0	
Bottle	s Filled	Preserva	tive Codes:	A - NONE B - I	HNO3 C-H2S	04 D - NaOH	E - HCI F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	125mL	HOPE	B	N			2467		
1	125mL		A						
	250ml		A	N					

Page _____ of ____

Laboratory Se	rvices			Consumers En itoring Well Sa					
and the second sec	N-MW- JRWhi-	+1177 I I I I I I I I I I I I I I I I I I	Date 10.3	<mark>3. 2.4</mark> Well Material:	PVC	Control Numb	Der <u>24-08</u> Iron	33-06 Galv. Steel	
Purge Metho	d: 🔽	Peristaltic	Su	bmersible	Bla	adder	Fultz	Bail	er
Depth to Wat	er Tape: G	eotecn	S/N	1: 7371		_			
QC SAMPLE:		AS/MSD	DUP_		Sonde ID:	15M	19H	_20M21G	22J
Depth-to-wat	er T/PVC (ft)	15.43	Depth-To-B	ottom T/PVC	(ft) 91.74	ρ	Completed b	VCIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/- 0.1	NA	+/- 3%	+/- 10%	+/- 0.3ppm	+/- 10mV	*	< 0.33	+/- 10%
12	The second	Lan a s		on parameters f	or the last thre	ee readings	-	10.00	
1258	and the second sec	ted p	and the second sec	F	c . a.i	1.1.0.0	225	16.44	1.0
1305	7.56	14.1	819	51.1	5.24	+123.9	225	15.46	1.69
1310	7.56	14.0	819	38.9	3,97	+ 58,5	225	15.46	1.75
1315	7.64	14.0	821	17.6	1.81	- 97.9	225	15.46	1.24
1320	7.67	14.0	820	13.8	1,41	-114.3	225	15.40	1.18
1325	7.71	14,1	819	9.2	0.95	-135.9	225	15.46	1.39
1330	7.73	14.0	818	8.1	0.83	-140.7	225	15.46	1.27
1335	7.75	14.3	815	6.9	0.71	-146.6	225	15.46	1.43
1340	7.76	14.1	819	6.1	0.63	-149.9	225	15.46	1.48
1345	7.77	14.1	818	5.8	0.59	-151.5	225	15.46	1.31
1350	7,78	13.9	810	5.5	0.56	-152.6	225	15.46	1.19
1355	7,78	14.3	812	5.1	0.52	- 154,5	225	15.46	1.34
1400	7.79	13.9	810	5.0	0.52	- 155.1	225	15.46	1.29
1405	7,78	14.0	309	5.0	0.51	-155.4	225	15.46	1.33
1406	collecte	d San	ple						
Total Pump T		41		olume (gal) :	~4.0		Review Date:	10-11-2	.4
Weather:	70°F,	SUNNY	_				Review By:	Y	5
Comments:								<u>PH</u> 7.5.8,	2
Bottle	s Filled	Preservat	ive Codes:	A-NONE B-I	HNO3 C - H2S	O4 D-NaOH E	- HCI F		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
)	125ML	HDPE	B	N					
	125ML		A						
	250ml	1	ťA	*					

Laboratory S	on Us.			Consumers En itoring Well Sa					
Location	EB·02 RWhiti			Well Material:	PVC	ss [ber <u>24 · 0</u> %	Galv. Steel	51
Purge Metho	ba:	Peristaltic	Su	bmersible	Blac	lder	Fultz	Bai	er
Depth to Wa	ter Tape:		S/N	l:					
QC SAMPLE:		MS/MSD	DUP_	-	Sonde ID:	15M	19H	20M210	i22J
Depth-to-wa	ter T/PVC (ft)		Depth-To-B	ottom T/PVC	(ft)	-	Completed b	v_CIE	
Time	рН	Тетр	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min	units	°C	uS/cm	% sat.	ppm	mV	mL/min	Drawdown ft	NTU
3-5 min	+/-0.1	NA	+/- 3% Stablizati	+/- 10% on parameters f	+/- 0.3ppm or the last three	+/- 10mV readinas	*	< 0.33	+/- 10%
1548		2cted S							
			ū						
Total Pump	Time (min):	-	Total Purge V	olume (gal) :	-		Review Date:	10-11-2	ч
Weather:		F, 541	nny				Review By:	· · ·	
Comments:		,						8	
	es Filled	Prospruat	ive Codes:	A NONE B					1
Quantity	Size	Туре	Preservative Code	A - NONE B - H Filtered Y/N	Quantity	Size	Type	Preservative Code	Filtered Y/N
1	125 ML	plastic	B	N					
1	125 mL		A						
	250ML		0						

Laboratory S	Gervices			Consumers En itoring Well Sa					
	FB.02 JRWhi	AND A REAL PROPERTY OF	Date <u>ID · C</u>	<u>3 ·24</u> Well Material:	PVC		iber <u>24 · D</u> Iron	833-09 Galv. Steel	
Purge Meth	od:	Peristaltic	Su	Ibmersible	Blac	dder	Fultz	Bai	ler
Depth to Wa	ater Tape:		S/N	J:					
QC SAMPLE		MS/MSD	DUP_		Sonde ID:	15M	19H	_20M210	i22J
Depth-to-wa	ater T/PVC (ft)		Depth-To-B	ottom T/PVC	(ft)	_	Completed b	v CIE	
Time	рН	Temp	Sp Cond	DO	DO	ORP	Pump Rate	Water level	Turbidity
min 3-5 min	units +/- 0.1	°C NA	uS/cm +/- 3%	% sat. +/- 10%	ppm +/- 0.3ppm	mV +/- 10mV	mL/min	Drawdown ft < 0.33	NTU +/- 10%
	1 9 99			on parameters f				< 0.55	+/- 10%
1557	Colle	ected s	sample						
							-		
1									
								1	
						_			
									11
Total Pump	Time (min):	-	Total Purge V				D		
Weather:		oF, Sunr		olume (gal) :			Review Date: Review By:		4
		, 2011	1.1				nenew by.	1	
Comments:							_	V	
Bottle	es Filled	Preserva	tive Codes:	A-NONE B-H	INO3 C - H2SO	4 D - NaOH	E-HCIF		
Quantity	Size	Туре	Preservative Code	Filtered Y/N	Quantity	Size	Туре	Preservative Code	Filtered Y/N
1	125mL	plastic	B	N					
1	125mL 250mL		A A	Ŧ					
			ind <1 gal/min for i						